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Abstract

We study the welfare change from project and policies when consumers’ be-
haviour is described with additive random utility models. We consider the
random compensating variation mainstream approach and review the latest
methodological developments. The expectation of the random compensating
variation is used as a measure of the average welfare change. Without income
effect, it is expressed by the monetized difference of the expectations of the max-
imum utilities with and without the changes in monetary costs or quality. This
measure reduces for the multinomial logit model to the logsum formula. More
generally, the expectation of the compensating variation can be expressed as a
path-independent line integral. The rule-of-a-half is an approximation of this
line integral. With income effect, the expectation of the compensating variation,
both unconditional and conditional on the choices without and with the changes,
is provided by one-dimensional integrals which can be computed numerically.
In the conditional case, the average welfare change is attributed to those keep-
ing and those changing alternative. The cumulative distribution function of
the compensating variation allows the analysis of inequalities by extending the
classical Lorenz curve and Gini coefficient. This analysis is perfomed distinctly
for positive and for negative values of the compensating variation. Treatment
of observed and unobserved heterogeneity is included. The survey of theoretical
results is illustrated with a numerical example in the context of transportation
mode choice, based on large-scale data collected in France.
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1. Introduction

1.1. Motivation and contribution

The paper deals with the measurement of consumers’ welfare. The analysis
is aimed at the evaluation of the changes in welfare from projects and policies
when consumers’ behaviour is described with discrete choice additive random
utility models (ARUMs). This is of relevance to many fields. In transportation,
a classical problem is the evaluation of the benefits that accrue to users as a
consequence of mode choice responses to the project or policy. The analysis is
developed with this specific application aim.

Changes, induced by the project or policy, in both monetary cost and quality,
e.g. travel time, of the alternatives are of interest. We use the terminology state
without the change and state with the change. Alternative wordings are before,
or ex-ante, and after, or ex-post, states. In transportation analysis, we make a
series of comparisons of two scenarios, usually the do-nothing case versus the do-
something case. Each comparison is referred to a given time frame. Therefore,
no temporal sequencing is envisaged for the two states.

Classical microeconomics, which treats divisible goods with deterministic
utility, proposes several measures of welfare change. These include consumer’s
surplus and Hicksian measures, i.e. the compensating and the equivalent varia-
tions. Measures of welfare change for models that represent the consumption of
discrete, mutually exclusive, goods with random utility, are adaptations of the
measures of classical microeconomics.

After the econometrics of the main ARUM, the logit, was set up in the
Seventies (McFadden, 1974), researchers defined measures of welfare change.
Detailed citations are in the next section. They started from the case without
income effect, i.e. the case where income plays no role in the discrete choice.
This case is consistent with the traditional approach of transportation demand
modelling, which rules out income effect on the basis of the assumption that
expenditure on transportation is a low fraction of income. Different approaches
were envisaged. The case with income effect is more involved and was tack-
led only later. According to economic theory, transportation modes should
be priced according to the full social costs. Higher prices than current practice
make income effect of increasing relevance, because individual responses to price
changes are, in principle, income-dependent.

Today, the mainstream, consolidated approach, without and with income
effect, is based on the random compensating variation (McFadden, 1999). The
expectation of the compensating variation is assumed as average welfare change
for a population of individuals who are homogenous with respect to systematic
utilities. Although equally theoretically valid, the random equivalent variation
is neglected in the evaluation practice, apparently without justification.

Differently from previous surveys (Jara-Díaz and Farah, 1988; Jara-Díaz,
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2007; Karlström, 2014), the paper reviews the latest developments in the main-
stream approach. These pertain, in particular, to the analytical derivation of
transition probabilities and expectations of the compensating variation condi-
tional on the transitions. These are of relevance because they provide methods
to estimate the shares of shifters and non shifters, and the attendant average
benefits. In addition, the paper provides results concerning the distribution
of the compensating variation. This is of relevance for a twofold reason. It
provides the means to compute analytically the shares of winners (values of
the compensating variation higher than zero) and losers (values of the compen-
sating variation lower than zero). It makes inequality analysis possible by the
construction of the Lorenz curve and the Gini coefficient. This construction is
new to the best of our knowledge and is provided by the present paper. The
case of a distinct inequality analysis for losses and for gains is dealt with. A sec-
ond new theoretical contribution is the treatment of observed and unobserved
heterogeneity. This is of relevance when the individuals are heterogenoeus and
welfare analysis for the aggregate of the population is to be performed.

1.2. Literature overview
The exposition adopts a chronological criterion.
The first methodological contributions on welfare change measurement with

discrete choice ARUMs related to the case without income effect. Different
approaches were proposed. Williams (1977), McFadden (1981) and Anderson
et al. (1992) used measures based on the representative consumer approach.
Anderson et al. (1992) suggest the following interpretation. The behaviour
of N consumers with different tastes is described by the choices made by a
single individual who has a preference for variety. The representative consumer
makes N trips. The frequency of choice of one alternative is provided by the
probability associated with the ARUM. The representative consumer’s indirect
utility equals N times the sum of the individual income and the expectation of
the maximum utility.

The measure of welfare change is the surplus variation of the representative
consumer. The approach yields for the welfare change N times the monetized
difference of the expectations of the maximum utilities in the state with change
and in the state without change. For multinomial logit, the formula reduces toN
times the monetized difference of logsums. Since it is based on the expectation
of the maximum utility, the measure is a utilitarian welfare function which
retains both positive and normative dimension. The representative consumer
approach was applied to the case with income effect by Delle Site (2013), who
derived for multinomial logit a representative consumer’s indirect utility.

Small and Rosen (1981) proposed for ARUMs without income effect a mea-
sure based on the aggregate compensating variation derived from the variation
of the expenditure function. They obtained a line integral of choice probabil-
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ities in systematic utilities between the two states without and with a policy
change. This integral is monetized by dividing by the constant marginal utility
of income.

The rule-of-a-half is an alternative approach used extensively by practition-
ers. It was first proposed based on an intuitive justification in a planning study
in the UK in the Sixties (Tressider et al., 1968). It provides a simple formula
for the assessment of users’ benefits for any demand model in the case without
income effect. The rule-of-a-half is also used to attribute conventionally the ben-
efits to transportation alternatives, to non-shifting users and new users of each
alternative, and to components of the generalized cost of travel. Williams (1976)
showed that, for any demand model, the rule-of-a-half can be derived with ap-
propriate assumptions and approximations from a surplus measure with respect
to generalized cost. Jara-Díaz (1990) specialized the derivation for ARUMs con-
sidering price and quality changes, starting from the line integral obtained by
Small and Rosen (1981). The accuracy of the rule-of-a-half approximation with
multinomial logit was investigated numerically by Ma et al. (2015).

To estimate welfare change with income effect, McFadden (1999) introduced
the definition of random compensating variation. It is the income adjustment
that equates maximum utility in the state with change to maximum utility in
the state without change. He proved that, without income effect, the expecta-
tion of the compensating variation reduces to the monetized difference of the
expectations of the maximum utilities in the state with change and in the state
without change. For multinomial logit, it boils down to the monetized difference
of logsums. Also, he proved that the expectation of the compensating variation
is equal to the line integral of Small and Rosen (1981). The combination of this
result with the one by Jara-Díaz (1990) suggests that the rule-of-a-half can be
derived analytically as an approximation of the mainstream measure.

The case with income effect was approached first by simulation, i.e. by
drawing from the distribution of the random terms (McFadden, 1999; Herriges
and Kling, 1999; Cherchi et al., 2004). Later on, researchers developed analytic
approaches. Relatively simple formulas for ARUMs have been provided, on the
basis of the distribution of the compensating variation, by Karlström and Morey
(2004) and Karlström (2014), and by de Palma and Kilani (2011). Dagsvik and
Karsltröm (2005) derived a more involved formula from Hicksian, i.e. compen-
sated, choice probabilities. de Palma and Kilani (2011) derived their formula
from Marshallian, i.e. observed, choice probabilities. Additionally, these last
authors provided formulas for the transition probabilities and for the expecta-
tions of the compensating variation conditional on the transitions. Closed-form
expressions of the transition probabilities for multinomial logit only had been
provided in a former paper (de Palma and Kilani, 2005).

Zhao et al (2012) and Delle Site and Salucci (2013; 2015) relaxed the as-
sumption that random terms are unchanged in the state without and in the
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state with change. Delle Site (2021) investigated the large sample properties of
the estimator of the monetized difference of logsums.

Additional methodological contributions to welfare analysis for discrete choice
models relate to non ARUMs, i.e. to models with unrestricted unobserved het-
erogeneity where a vector of random terms enter each alternative’s utility func-
tion in an unspecified way (Bhattacharya, 2015 and 2018). Since the practice
of transportation demand modelling is based mostly on ARUMs, these devel-
opments are not included in the following sections.

1.3. Organization of the paper
The remainder of the paper includes the following. Section 2 reports on

the main assumptions and identities related to discrete choice ARUMs. Sec-
tions 3-6 deal with welfare change. The expressions of the expectation of the
compensating variation are made available in Section 3. The expressions of the
transition probabilities and of the conditional expectations of the compensating
variation are provided in Section 4. In Section 5, the support and the cumu-
lative distribution function of the compensating variation are given, and the
application of the Lorenz curve and Gini coefficient for inequality analysis is
discussed. Observed and unobserved heterogeneity is tackled in Section 6. New
results are in the form of propositions. The theoretical insights are illustrated
with a numerical example in Section 7. Conclusions are in Section 8.

Appendix A includes, for the convenience of researchers and practitioners,
a summary of key findings from classical microeconomic theory of divisible
goods. Appendix B presents the microeconomic foundation of the econometric
specifications introduced in Section 2 and used in the other sections of the paper.

2. Main assumptions and identities

2.1. Additive random utility models
Consider an individual facing the choice among a finite number of J alterna-

tives, J ≥ 2. In ARUMs, each alternative j is associated with a perceived utility
uj. This takes the following additively separable form (see, e.g., Anderson et
al., 1992):

uj = vj + εj, j = 1...J,

where vj is the j-th component of a fixed row vector of systematic utilities
v = (v1, ..., vJ), and εj is the j-th component of a row vector ε = (ε1, ..., εJ)
of random terms. The systematic utility vector v is a function of individual’s
and alternative’s attributes. The random vector ε has an absolutely continuous
multivariate distribution with finite expectation and full support on RJ .
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The individual chooses the alternative that maximizes her perceived utility.
Therefore, the probability Pj (v) of choosing alternative j is the probability of
the event {uj ≥ ui, ∀i 6= j}:

Pj (v) = Pr (uj ≥ ui, ∀i 6= j) , j = 1...J, (1)
where Pr (·) is a probability measure.

Different ARUMs are obtained depending on the joint distribution of the
random terms. The most frequently used choice models are multinomial logit,
nested logit and probit.

If random terms are independently and identically distributed according to
a Gumbel cumulative distribution function (c.d.f.) given by (see, e.g., Kotz and
Nadarajah, 2000):

Fεj (z) = exp
(
−e−z/θ

)
, z ∈ R, j = 1...J,

where θ is a positive scale parameter, then we have the multinomial logit model.
The probabilities take the following form (see: McFadden, 1974; Train, 2009):

Pj (v) = evj/θ∑J
k=1 e

vk/θ
, j = 1...J.

For identification problems, it is usually assumed in estimation that θ = 1.
If the set of alternatives is partitioned into K subsets Ik, k = 1...K, and if

the alternatives are correlated within subsets and uncorrelated across subsets
with multivariate joint c.d.f. of the random terms:

Fε (z1, ..., zJ) = exp

− K∑
k=1

∑
j∈Ik

e−zj/θk

θk
 , z1, ..., zJ ∈ R,

where θk are parameters satisfying 0 < θk ≤ 1, k = 1...K, then we have the
two-level nested logit model. The marginals are Gumbel. When θk = 1 for all
k, the model reduces to multinomial logit.

W.l.o.g., the systematic utility can be decomposed into two parts:

vj = v̂k + vj|k, j ∈ Ik, k = 1...K,
where v̂k includes only the attributes shared by all the alternatives in the sub-
set Ik, and vj|k includes only the attributes that take different values across
alternatives of the subset Ik.

The probability of choosing alternative j belonging to subset Ik takes the
form (for derivation see: Ben-Akiva and Lerman, 1985; Train, 2009):

Pj (v) = ev̂k+Υk∑K
h=1 e

v̂h+Υh

evj|k/θk∑
i∈Ik

evi|k/θk
, j ∈ Ik, k = 1...K,
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where Υk, related to subset Ik, is the inclusive variable of the lower level choices,
given by:

Υk = θk ln
∑
i∈Ik

evi|k/θk , k = 1...K.

If the random vector ε is distributed according to a multivariate normal,
then we have the probit model. Probabilities have not not a closed form. They
can be obtained by simulation, i.e. drawing from the distribution of the random
terms, directly from Eq. (1) (Train, 2009).

2.2. Systematic utility specifications

Let y be individual’s income, pj the price (monetary cost) of alternative j,
vj the contribution of other quality attributes of alternative j (e.g. travel time).
We consider the following specification:

vj = wj (y − pj) + vj, j = 1...J, (2)

where wj (y − pj) is a strictly increasing function of the residual income y− pj.
A theoretical justification of Eq. (2) is provided in Appendix B. We distin-

guish two cases, one without income effect and one with income effect.
Without income effect, we consider a linear dependence of systematic utili-

ties in residual income y − pj :

vj = λ (y − pj) + vj, j = 1...J, (3)

where λ > 0 is the constant marginal utility of income. Notice that choice
probabilities are independent of income.

With income effect, two specifications are commonly used.
One has alternative-specific constant marginal utility of income:

vj = λj (y − pj) + vj, j = 1...J,

with λj > 0, j = 1...J .
The other is the translog which is non-linear in income:

vj = λ ln (y − pj) + vj, j = 1...J.

The translog is appealing because it models a decreasing marginal utility of
income, with the value of one dollar decreasing with increasing income.
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3. Expectation of compensating variation

3.1. Without income effect
In this section we consider the case of no income effect with systematic

utilities of the form in Eq. (3). Consider a change of state: p′1 → p′′j , v
′
j →

v′′j , j = 1...J . Assume the random terms are unchanged in the two states without
and with the change. Then, the random compensating variation cv satisfies:

max
j=1...J

[
λ
(
y − p′j

)
+ v′j + εj

]
= max

j=1...J

[
λ
(
y − cv − p′′j

)
+ v′′j + εj

]
.

Notice that the compensating variation cv is independent of income. Let the
row vector of the simplified systematic utilities be v̂ = (v̂1, ..., v̂J) = (v1 − λy, ..., vJ − λy).

McFadden (1999; p. 258) has proved that the expectation of the random
compensating variation is:

E [cv] = 1
λ

{
E
[

max
j=1...J

(
v̂′′j + εj

)]
− E

[
max
j=1...J

(
v̂′j + εj

)]}
. (4)

It is straightforward to extend the proof by McFadden (1999) to the case
of changing choice sets. Assume that in the state without the change we have
the alternatives j′ = 1, ..., J ′, and in the state with the change the alternatives
j′′ = 1, ..., J ′′. Then, the expectation of the compensating variation is:

E [cv] = 1
λ

{
E
[

max
j′′=1...J ′′

(
v̂′′j′′ + εj′′

)]
− E

[
max
j′=1...J ′

(
v̂′j′ + εj′

)]}
.

Having assumed again an unchanged choice set, we specialize Eq. (4) to
multinomial and nested logit. For multinomial logit, the expectation of the
maximum utility is (McFadden, 1978):

E
[

max
j=1...J

(v̂j + εj)
]

= ln
J∑
j=1

ev̂j + γ,

where γ ∼= 0.57 is Euler’s constant.
Therefore, the expectation of the compensating variation is given by the

monetized difference of the logsum:

E [cv] = 1
λ

ln
J∑
j=1

ev̂
′′
j − ln

J∑
j=1

ev̂
′
j

 . (5)

The estimator of the monetized difference of the logsum in Eq. (5), derived
from the maximum likelihood estimators of the coefficients of the systematic
utilities, is consistent, asymptotically efficient and asymptotically normal un-
der mild conditions (Delle Site, 2021). Conditions include a strictly positive
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marginal utility of income λ. The delta method (Mittelhammer, 2013) pro-
vides an estimator of the asymptotic variance of the estimator of the monetized
difference of the logsum. From this, large sample confidence bounds can be
computed.

For the two-level nested logit, the expectation of the maximum utility is
(McFadden, 1978):

E
[

max
j=1..J

(v̂j + εj)
]

= ln
K∑
k=1

∑
j∈Ik

ev̂j/θk

θk

+ γ.

Therefore, the expectation of the compensating variation is:

E [cv] = 1
λ

ln
K∑
k=1

∑
j∈Ik

ev̂
′′
j /θk

θk

− ln
K∑
k=1

∑
j∈Ik

ev̂
′
j/θk

θk
 .

For any ARUM, the expectation of the compensating variation is also given
by the following path-independent line integral (McFadden, 1999):

E [cv] = 1
λ

∫ v̂′′

v̂′

J∑
j=1

Pj (v̂) dv̂j. (6)

where v̂′ = (v̂′1, ..., v̂′J) , v̂′′ = (v̂′′1 , ..., v̂′′J).
This integral is important, because it is the starting point to prove the

linkage between the expectation of the compensating variation and the rule-of-
a-half. Therefore, we provide here a justification of Eq. (6) along the lines of
McFadden (1999).

Then, define:

Γ = 1
λ
E
[

max
j=1...J

(v̂j + εj)
]
.

Consider the total differential of Γ with respect to the systematic utilities:

dΓ = 1
λ

J∑
j=1

∂E [maxj=1...J (v̂j + εj)]
∂v̂j

dv̂j. (7)

Using a property of ARUMs (the so-called Williams-Daly-Zachary theorem; see
McFadden, 1981) we get:

∂E [maxj=1...J (v̂j + εj)]
∂v̂j

= Pj (v̂) , j = 1...J.

By substitution into Eq. (7) we obtain:
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dΓ = 1
λ

J∑
j=1

Pj (v̂) dv̂j,

which yields, by integration, the line integral of Eq. (6). The integral is path
independent because the differential is exact (Galbis and Maestre, 2012).

Figure 1 illustrates the geometry of the line integral in a case of logit with two
alternatives, with λ = 1 and when the path of integration is the line segment `,
between v̂′ with coordinates (−5,−1.5) and v̂′′ with coordinates (1, 1.5), given
by the equation v̂2 = 0.5v̂ + 1. It is possible to prove that the line integral
is given by the sum of the two shaded areas drawn over the planes v̂2 = −1.5
and v̂1 = −5 (see Delle Site, 2008, for the general case with more than two
alternatives).

The areas are given by, respectively, the ordinary integrals
∫ v̂′′1
v̂′1
P̃1(v̂1)dv̂1

and
∫ v̂′′2
v̂′2
P̃2(v̂2)dv̂2, where P̃1(v̂1) (resp. P̃2(v̂2)) is the curve P1 (v̂1, v̂2) (resp.

P2 (v̂1, v̂2)) evaluated over the parameterized line `. The parametric equations
of the line ` express the systematic utility of one alternative as function of the
systematic utility of the other:

v̂k = v̂k (v̂i) = v̂′k + (v̂i − v̂′i)
v̂′′k − v̂′k
v̂′′i − v̂′i

, k = 1, 2, i 6= k.

As first proved by Jara-Díaz (1990), computation of the line integral in Eq.

p
ro

b
a

b
ili

ty

𝑃2 𝐯   

𝑃1 𝐯   

𝑣 1 
𝑣 2 

Figure 1: Geometric representation of the line integral of Eq. (6) with two alternatives

(6) over the segment between v̂′ and v̂′′ and linearization of demand yields the
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following result: the expectation of the compensating variation is approximately
given by the following expression, referred to as rule-of-a-half:

E [cv] ∼=
1

2λ

J∑
j=1

[Pj (v̂′) + Pj (v̂′′)]
(
v̂′′j − v̂′j

)
, (8)

where Pj (v̂′) and Pj (v̂′′) are the probabilities in, respectively, the state without
and the state with change. Geometrically and with reference to Figure 1, the
rule-of-a-half is equivalent to the sum of the two trapezoidal areas obtained from
the shaded areas over the planes v̂2 = −1.5 and v̂1 = −5.

The rule-of-a-half lends itself to a nice, but incorrect, interpretation. Re-
write Eq. (8) in the following form:

E [cv] ∼=
1
λ

J∑
j=1

Pj (v̂′)
(
v̂′′j − v̂′j

)
+ 1

2λ

J∑
j=1

[Pj (v̂′′)− Pj (v̂′)]
(
v̂′′j − v̂′j

)
.

For each alternative, if Pj (v̂′′) > Pj (v̂′), one would be induced to interpret
the first term in the r.h.s. as the welfare change related to the existing demand
Pj (v̂′), and the second term as the welfare change related to the newly created
demand Pj (v̂′′)− Pj (v̂′). However, the interpretation is not correct because it
does not consider the probabilistic nature of the model. The rigorous attribution
of the welfare change to shifters and non shifters is to be made on the basis of
the expectations of the compensating variation conditional on the transitions,
as it will be seen in Section 4.

3.2. With income effect
In this section we consider the case of income effect with systematic utilities

of the general form in Eq. (2). Consider a change of state: p′j → p′′j , v
′
j → v′′j , j =

1...J . Assume the random terms are unchanged in the two states without and
with the change. Then, the random compensating variation cv satisfies:

max
j=1...J

[
wj
(
y − p′j

)
+ v′j + εj

]
= max

j=1...J

[
wj
(
y − cv − p′′j

)
+ v′′j + εj

]
. (9)

The expectation of the compensating variation is not available in closed
form. It can be computed by simulation (Cherchi et al., 2004; Herriges and
Kling, 1999; McFadden, 1999), i.e. by drawing from the distribution of the
random terms, or numerically by means of one-dimensional integrals as follows.

One formula for the expectation of the compensating variation is provided by
de Palma and Kilani (2011; Theorem 3). They obtain it based on Marshallian,
i.e. observed, transition probabilities (see Section 4).

Let δj = v′′j − v′j, j = 1...J, be the changes in the systematic utilities.
Assume, without loss of generality, the ordering δ1 ≤ ... ≤ δJ . We use the
notation x+ = max (x, 0). We have the formula:
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E [cv] = ψJ −
J∑
j=1

∫ ψJ

ψjj

Pj
(
v′1 + δ+

1 (c) , ..., v′J + δ+
J (c)

)
dc, (10)

where ψJ is given by ψJ = maxj=1,...,J ψJj; ψJj is the compensation of income
that satisfies:

δj (ψJj) = wj
(
y − ψJj − p′′j

)
+ v′′j − wj

(
y − p′j

)
− v′j = (δj − δJ)+ ;

ψjj is the income compensation for an individual who chooses j without and
with the change:

wj
(
y − p′j

)
+ v′j = wj

(
y − ψjj − p′′j

)
+ v′′j ; (11)

δj (c) is the difference between utility with change and income compensated by
c and utility without the change:

δj (c) = wj
(
y − c− p′′j

)
+ v′′j − wj

(
y − p′j

)
− v′j.

Notice that ψjj is unique because of strictly increasing monotonicity of sys-
tematic utility in residual income.

Another formula of the expectation of the random compensating variation
is by Karlström (2014). Preliminarily, we need to introduce the random ex-
penditure function, because the formula applies the relationship between the
expectation of the compensating variation and the expectation of the expendi-
ture function.

We define the random variable maximum utility:

ū ≡ max
j=1...J

uj = max
j=1...J

(vj + εj).

The random expenditure functionm (ū′) necessary to achieve the utility level
ū′ of the state without change is defined implicitly by (Karlström and Morey,
2004; Dagsvik and Karlström, 2005):

ū′ = max
j=1...J

[
wj
(
m (ū′)− p′′j

)
+ v′′j + εj

]
. (12)

Consider the expenditure m→j (ū′), conditional on the choice of alternative
j in the state with change, necessary to achieve the utility level ū′ of the state
without change. The conditional expenditure m→j (ū′) satisfies:
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ū′ = wj
(
m→j (ū′)− p′′j

)
+ v′′j + εj, j = 1...J. (13)

Due to the increasing monotonicity of systematic utilities in income, having
taken into account Eq. (12) and Eq. (13), we have:

m (ū′) = min
j=1...J

[m→j (ū′)] . (14)

The compensating variation cv→j conditional on the choice of alternative j
in the state with change satisfies:

ū′ = wj
(
y − cv→j − p′′j

)
+ v′′j + εj, j = 1...J. (15)

Due to the increasing monotonicity of the systematic utilities in income, having
taken into account Eq. (9) and Eq. (15), we have:

cv = max
j=1...J

cv→j. (16)

By definition of conditional expenditure and conditional compensating varia-
tion, we have:

m→j (ū′) = y − cv→j, j = 1...J.

Therefore, by Eq. (14) and Eq. (16) we get:

m (ū′) = min
j=1...J

m→j (ū′) = min
j=1...J

(y − cv→j) = y − max
j=1...J

cv→j = y − cv.

By taking expectations we get:

E [m (ū′)] = y − E [cv] . (17)

Karlström (2014) obtains the expression of E [m (ū′)] , from which, based on
Eq. (17), he gets:

E [cv] = y −
J∑
j=1

∫ µjj

0
Pj (g1 (m) , ..., gJ (m)) dm, (18)

where µjj is the expenditure needed with the change to restore the without
change level of utility if alternative j is chosen without and with the change:
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wj
(
y − p′j

)
+ v′j = wj

(
µjj − p′′j

)
+ v′′j , j = 1...J,

and

gj (m) = max
[
wj
(
y − p′j

)
+ v′j, wj

(
m− p′′j

)
+ v′′j

]
, j = 1...J.

Notice that µjj is unique because of strictly increasing monotonicity of sys-
tematic utility in residual income.

Both formulas of Eq. (10) by de Palma and Kilani (2011) and Eq. (18) by
Karlström (2014) generally require numerical integration, because the indefinite
integrals in the formulas cannot be expressed in closed form. The integrand
functions are not in a closed form, because they require the computation of
a maximum function. Libraries implemented in main software environments
allow today easy computation of these integrals.

3.3. Changing the random terms
In the two previous sections, the assumption of unchanged random terms is

made. Here, we consider the changes in the random terms: ε′j → ε′′j , j = 1, ..., J .
Delle Site and Salucci (2013, Proposition 4) prove that, without income effect,
the expectation of the compensating variation is:

E [cv] = 1
λ

{
E
[

max
j=1...J

(
v′′j + ε′′j

)]
− E

[
max
j=,...J

(
v′j + ε′j

)]}
,

which depends only on the marginal distributions of the random terms without
change and with change. This theoretical finding is not trivial because ε′j is
correlated with ε′′j . The property was first illustrated by numerical experiments
by Zhao et al. (2012).

With income effect, the expectation of the compensating variation can be
computed by simulation (see examples in Delle Site and Salucci, 2013).

4. Transition choice probabilities and conditional expectations of com-
pensating variation

4.1. Transition choice probabilities
In this section, we provide expressions for the transition probabilities, i.e.

probabilities of choosing alternative i without the change and alternative j
with the change. Transition probabilities are of interest because they provide,
for a population of homogenous individuals (in terms of systematic utilities),
the estimation of the shares of those who stay on the same alternative (non
shifters) and of those who change alternative (shifters). In the case without
income effect, income is irrelevant to transition probability computation.
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Consider a change of state: v′ = (v′1, ..., v′J) → v′′ = (v′′1 , ..., v′′J). Random
terms are assumed unchanged. Again, let δj = v′′j − v′j, j = 1...J, and assume
the ordering δ1 ≤ ... ≤ δJ . de Palma and Kilani (2011, Theorem 1) prove that
the probability Pi→j (v′,v′′) of the transition from alternative i to j is:

Pi→j (v′,v′′) =


Pi
(
v′1 + (δ1 − δi)+ , ..., v′J + (δJ − δi)+

)
, j = i;∫ δj

δi
Πj
i

(
v′1 + (δ1 − z)+ , ..., v′J + (δJ − z)+

)
dz, j > i;

0, j < i,

where x+ = max (x, 0) and Πj
i (ζ1, ..., ζJ) = −∂Pi (ζ1, ..., ζJ) /∂ζj.

For multinomial logit, transition probabilities are available in closed form
(de Palma and Kilani, 2011, Proposition 1):

Pi→j (v′,v′′) =


ev′

i

Ωi
, j = i;∑j−1
r=i

(
ev′

i

Ωr+1
− ev′

i

Ωr

)
e

v′′
j

σr
, j > i;

0, j < i,

(19)

where:

σr = σ0 −
∑
k≤r

ev
′′
k , r = 1, ..., J ;

σ0 =
∑
k

ev
′′
k ;

Ωr = sr + σr · e−δr , r = 1, ..., J ;
sr =

∑
k≤r

ev
′
k , r = 1, ..., J.

4.2. Conditional expectations of compensating variation
In this section, we provide expressions for the expectations of the compen-

sating variation conditional on the transitions. Conditional expectations of the
compensating variation are of interest because they provide, for a population of
homogenous individuals (in terms of systematic utilities), the estimation of the
average welfare change for the sub-populations of shifters and non shifters.

Random terms are assumed unchanged. Hereafter, only transitions i → j
for which we have a strictly positive probability Pi→j > 0 are considered. De
Palma and Kilani (2011, Theorem 3) prove that the expectation of the random
compensating variation conditional on the transition i→ j is:

E [cvi→j] =

ψj −
1

Pi→j (v′,v′′)

∫ ψj

ψij

Pi→j
(
v′1 + δ+

1 (c) , ..., v′J + δ+
J (c) ; v′′

)
dc, j ≥ i,
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where ψj = maxi=1...J ψji, ψij = max (ψii, ψij), δj (c) = wj
(
y − c− p′′j

)
+v′′j−v′j,

ψij satisfies δj (ψij) = (δj − δi)+ .
For multinomial logit, in the case without income effect of specification (3),

the expectation of the compensating variation conditional on the transition
i→ j is available in closed form (de Palma and Kilani, 2011, proposition 4):

E [cvi→j] =

ψii, j = i;
1
Ξij

∑j−1
r=i

1
σr

(
ψ(r+1)(r+1)

Ωr+1
− ψrr

Ωr
− τr

)
, j > i,

(20)

where

Ξij =
j−1∑
r=i

1
σr

(
1

Ωr+1
− 1
Ωr

)
, j > i,

and

τr = 1
λ

(
δr+1 − δr + lnΩr+1 − lnΩr

sr

)
, r = 1...J − 1.

Notice that, since there is no income effect, σ0 and σr, sr, r = 1, ..., J, are
obtained using the vectors v̂′ and v̂′′ of the simplified systematic utilities.

By the law of total expectation, the expectation of the compensating varia-
tion conditional on the choice of alternative i without the change is:

E [cvi→] = 1
Pi (v′)

∑
j≥i

Pi→j (v′,v′′)E [cvi→j] , i = 1...J, (21)

while the expectation of the compensating variation conditional on the choice
of alternative j with the change is:

E [cv→j] = 1
Pj (v′′)

∑
i≤j

Pi→j (v′,v′′)E [cvi→j] , j = 1...J. (22)

An additional application of the law of total expectation provides the un-
conditional expectation of the compensating variation:

E [cv] =
J∑
i=1

Pi (v′)E [cvi→] =
J∑
j=1

Pj (v′′)E [cv→j] .

5. Distribution of compensating variation and inequality analysis

5.1. Distribution of compensating variation
The c.d.f. Φj→ of the compensating variation cvj→ conditional on the choice

of alternative j without change is given by the following conditional probability:

Φj→ (c) = Pr
(
cvj→ ≤ c | v′j + εj = max

k=1...J
(v′k + εk)

)
, j = 1...J.
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The support and the expression of the conditional compensating variation
cvj→, and the support and the expression of the unconditional compensating
variation cv are available from de Palma and Kilani (2011). Random terms are
assumed unchanged.

The conditional compensating variation cvj→ has support
[
ψjj, ψ̂

]
, where

ψjj is the income compensation that satisfies Eq. (11), and ψ̂ is given by
ψ̂ = maxk=1...J (ψkk). The unconditional compensating variation cv has support
given by

[
mink=1...J (ψkk) , ψ̂

]
.

Define the vector:

v (c) = (max [v′1, w1 (y − c− p′′1) + v′′1] , ...,max [v′J , wJ (y − c− p′′J) + v′′J ]).

The conditional compensating variation cvj→ has, for any c of its support,
c.d.f.:

Φj→ (c) = Pj (v (c))
Pj (v′) , j = 1...J. (23)

The unconditional compensating variation cv has, for any c of its support,
c.d.f.:

Φ (c) =
J∑
j=1

Hj (c)Pj (v (c)) , (24)

where Hj (c) = 1 if c ≥ ψjj, Hj (c) = 0 otherwise (Heaviside function at ψjj).
This distribution is discrete-continuous.

The shares of losers and of winners are provided by, respectively, Φ (c = 0)
and 1− Φ (c = 0).

5.2. Inequality analysis
The analysis of inequality in the distribution of the compensating variation

can be carried out based on the Lorenz curve and the Gini coefficient. The
Lorenz curve can be used to relate the cumulative proportion of users to the
cumulative proportion of welfare change received (random compensating varia-
tion) when users are arranged in ascending order of their welfare change. The
associated Gini coefficient is a synthetic index of inequality (see, e.g., Gastwirth,
1972). A Gini coefficient of value zero expresses perfect equality, of value one
maximal inequality.

The common use of the Lorenz curve and Gini coefficient is for representation
of situations with positive wealth only. In this occurrence, i.e., only gains in
terms of random compensating variation, as illustrated in Figure 2, the Lorenz
curve is included in the interval [0, 1]. The Gini coefficient is defined as the ratio
of the area between the Lorenz curve and the +45◦ line (area A) to the area
delimited by the the +45◦ line and the axes (area A+B). The area A is called
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the area of concentration. The +45◦ line represents complete equality in gains:
everyone has the same gain.

Extension to the case of losses only is straightforward: as illustrated in
Figure 3, the Lorenz curve is included in the interval [−1, 0], and the Gini
coefficient is defined as the ratio of area A to area A+B. The−45◦ line represents
complete equality in losses: everyone has the same loss. The Gini coefficient
is, in both cases, included in the interval between 0 (complete equality) and 1
(complete inequality, i.e. the condition where the marginal user takes the full
gain, or loss, and the others take none).

Figure 2: A Lorenz curve in the case of gains only

Figure 3: A Lorenz curve in the case of losses only

Extension to mixed cases with both positive and negative wealth has been
dealt with by a few authors (see, e.g., Schutz, 1951, and Chen et al., 1982; De
Battisti et al., 2019, provide a state of the art on the topic). In the litera-
ture, only the case with positive expectation of wealth is considered. Extended
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Lorenz curves and adjusted Gini coefficients have been proposed. However, in-
tepretation in terms of inequality is controversial. For this reason, in the case
where the compensating variation takes both negative and positive values, we
propose a distinct inequality analysis for losses and for gains. To this aim, we
define the c.d.f. Φ− (c) of the non-gain values of the compensating variation cv:

Φ− (c) = Φ (c)
Φ (0) , Φ (0) 6= 0, c ≤ 0,

and the c.d.f. Φ+ (c) of the non-loss values of the compensating variation cv:

Φ+ (c) = Φ (c)− Φ (0)
1− Φ (0) , Φ (0) 6= 1, c ≥ 0.

Evidently, in the case of non-gains only, we get Φ− (c) = Φ (c) since Φ (0) = 1.
In the case of gains only, we get Φ+ (c) = Φ (c) since Φ (0) = 0.

Assume that the population of users is in ascending order of relative value
of compensating variation.

Proposition 1. The Lorenz curve L, respectively for non-gains cv ≤ 0 and for
non-losses cv ≥ 0, is:

L (π) =


1

|E−[cv]|
∫ π

0 Φ
−−1 (t) dt, cv ≤ 0, 0 ≤ π ≤ 1;

1
E+[cv]

∫ π
0 Φ

+−1 (t) dt, cv ≥ 0, 0 ≤ π ≤ 1,

where π is the cumulative proportion of the population of users, Φ−−1 (·) and
Φ+−1 (·) are, respectively, the inverse of the c.d.f. Φ− (c) of the non-gain values
of cv and the inverse of the c.d.f. Φ+ (c) of the non-loss values of cv, E− [cv]
and E+ [cv] are, respectively, the expectation of the non-positive values of cv and
the expectation of the non-negative values of cv, |·| denotes the absolute value.

Proof. From Lorenz curve definition (Gastwirth, 1972).

The inversion of Φ− (c) and Φ+ (c), and subsequent integration required to
draw the Lorenz curve can be carried out numerically.

Proposition 2. The Gini coefficient G can be obtained, respectively for non-
gains cv ≤ 0 and for non-losses cv ≥ 0, by simulation using the formulas :

G =
{ 1

2|E−[cv]|E [|cv1 − cv2|] , cv1, cv2 ≤ 0;
1

2E+[cv]E [|cv1 − cv2|] , cv1, cv2 ≥ 0,

where cv1 and cv2 are independent copies of cv.

Proof. Based on Kendall and Stuart (1958).
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6. Observed and unobserved heterogeneity

Assume that the individuals are heterogeneous with respect to attributes of
the systematic utilities (observed heterogeneity), or with respect to estimation
coefficients of the systematic utilities (unobserved heterogeneity). One may
wish to carry out welfare analysis for the aggregate of the individuals.

In transportation applications, the case of observed heterogeneity is the one
where we have heterogeneous individual attributes, such as income, or heteroge-
neous alternative attributes, the latter situation typically arising when individ-
uals of different origin-destination pairs are considered. The case of unobserved
heterogeneity is, as an example, the one where a distribution of the time and
cost coefficients is accounted for. The latter gives rise to the popular mixed, or
random coefficients, logit (see, among the others, Train, 2009).

6.1. Distribution of compensating variation
In both the observed and the unobserved case, it is possible to derive an

aggregate c.d.f. of the compensating variation on the basis of the law of total
probability.

Proposition 3. In the observed heterogeneity case, if there are N sample indi-
viduals, each with a weight ωn in the population and a c.d.f. of the compensating
variation Φn (c), the aggregate c.d.f. is:

Φ (c) = 1∑N
n=1 ωn

N∑
n=1

ωnΦn (c) , c ∈ R.

Proposition 4. In the unobserved heterogeneity case, consider mixed logit. If β
is the vector of estimation coefficients of the systematic utilities and Φ (β; c) the
c.d.f. of the compensating variation conditional on the values of the coefficients
β, then the unconditional c.d.f. is:

Φ (c) =
∫ ∞
−∞

...
∫ ∞
−∞

Φ (β; c) f (β) dβ, c ∈ R,

where f (β) is the probability density function (p.d.f.) of the coefficients β.

6.2. Expectation of compensating variation
Assume then that one wishes to consider the expectation of the compensat-

ing variation over the aggregate of the individuals.

Proposition 5. In the observed heterogeneity case, given the expectation En [cv]
for sample individual n, the expectation over the aggregate is:
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E [cv] = 1∑N
n=1 ωn

N∑
n=1

ωnEn [cv] .

Proof. By the law of total expectation.

Proposition 6. In the unobserved heterogeneity case, consider mixed logit. Let
E [β; c] =

∫∞
−∞ cϕ (β; c) dc be the expectation of the compensating variation con-

ditional on the values of the coefficients β, where ϕ (β; c) is the p.d.f. of the
compensating variation conditional on β. The unconditional expectation, i.e.
the expectation over the aggregate, is:.

E [cv] =
∫ ∞
−∞

...
∫ ∞
−∞

E [β; c] f (β) dβ.

Proof. By the law of total probability, the unconditional p.d.f. of the compen-
sating variation is:

ϕ (c) =
∫ ∞
−∞

...
∫ ∞
−∞

ϕ (β; c) f (β) dβ.

We have:

E [cv] =
∫ ∞
−∞

cϕ (c) dc.

The proposition follows from application of the Fubini theorem, by which change
of the order of integration is allowed (Billingsley, 1995).

7. Numerical illustration

7.1. Data
We consider five transportation modes: car (alternative 1), cycling (alter-

native 2), motorcycle (alternative 3), public transportation (alternative 4), and
walking (alternative 5). Systematic utilities are as follows (no income effect):

v̂j = βtj + ASCj, j = 1, ..., 5,

where tj is travel time on alternative j, β and ASCj, j = 1, ..., 5 are estimation
coefficients (ASC stands for alternative specific constant).

A multinomial logit is estimated on the basis of big data from the Rhône
Department in East-Central France, having Lyon as capital. Census data re-
lated to more than two hundred thousand households surveyed between 2015

21



and 2019 are used. Surveys have been conducted by INSEE (Institut National
de la Statistique et des Études Économiques). The road network for cars, bi-
cycles, motorcycles and pedestrians is retrieved from OpenStreetMap. Travel
times are based on the fastest route computed from the open-source routing
engine GraphHopper. The fastest route on the public transportation network is
computed using timetables retrieved from GTFS (General Transit Feed Specifi-
cation) files. Additional details and data statistics are found in Javaudin et al.
(2021). The estimates of the coefficients of the logit model with the associated
t-stat are in Table 1. We have set ASC1 = 0. The econometric software NLogit
has been used.

Table 1: Coefficient estimates and t-stat

coeff. attribute estimate (t-stat)
β travel time (hours) -1.73093 (-163.1)
ASC2 cycling -2.11080 (-194.1)
ASC3 motorcycle -4.16263 (-230.9)
ASC4 public transportation .39506 (51.3)
ASC5 walking .13518 (12.3)
221,571 observations

7.2. Policy
Assume an ideal corridor with commuters travelling towards a central busi-

ness district. Assume that in the state without policy we have the following
travel times: t1 = 0.48 hours on car, t2 = 0.58 hours cycling, t3 = 0.18 hours
on motorcycle, t4 = 1.18 hours on public transportation, and t5 = 3.3 hours
walking. The associated modal shares are P ′1 = 63.3% for cars, P ′2 = 6.5% for
cycling, P ′3 = 1.7% for motorcycle, P ′4 = 28.0% for public transportation, and
P ′5 = 0.5% for walking.

A congestion charging policy is considered. The policy changes modal de-
mand. Travel time on car is considered endogenous because it changes with
demand in the light of congestion effects, while travel times on the other modes
are assumed constant. For illustration aims, the following volume-delay function
(hours) is assumed: t1 = 0.1372 + 0.686 (P1)1.5.

According to the classical approach, the optimal congestion charge results
from the solution of the system optimum problem (Yang and Huang, 2005).
In our multi-modal setting, this is the problem where we search for the modal
shares that maximize the direct utility of the representative consumer. The
direct utility is provided in Anderson et al. (1988). Direct utility is needed
because the demand shares are the decision variables of the optimization prob-
lem. The problem is subject to the demand conservation and non-negativity
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constraints. Therefore:

max
Pi,i=1,...,5

v̂1 [t1 (P1)]P1 +
5∑
i=2

v̂iPi −
5∑
i=1

Pi lnPi,

s.t.
5∑
i=1

Pi = 1, Pi ≥ 0, i = 1, ..., 5.

The system optimum modal shares, which are assumed as shares in the state
with policy, are P ′′1 = 51.3% for cars, P ′′2 = 8.6% for cycling, P ′′3 = 2.2% for
motorcycle, P ′′4 = 37.2% for public transportation, and P ′′5 = 0.7% for walking.
For computation, the solvers of the Python Scipy.Optimize library have been
used.

The system optimum shares can be obtained in a decentralized way with
a charge. From the first-order conditions of the system optimum problem, we
obtain that the optimal charge is equal to the congestion externality. The charge
η in utility units is:

η = P ′′1
∂v̂1 [t1 (P ′′1 )]

∂P1
= −0.652.

Having considered an average value of time equal to 9.17 EUR/h (French
value from the meta-analysis in Wardman et al., 2012), we obtain a marginal
utility of income λ = 0.18876, and, consequently, a value of the optimal charge of
3.456 EUR/h. The congestion charging policy results in a significant reduction
of the car share from 63.3% to 51.3%, with an associated decrease of travel time
on this mode from 0.48 to 0.39 hours (19% reduction). Demand on all other
modes increase, particularly on public transportation.

7.3. Users’ benefits
Table 2 shows the values of transition probabilities (from the alternative on

the row to the alternative on the column; based on Eq. 19), and of probabilities
in the state without policy (first column on the right) and in the state with
policy (bottom row). The values on the main diagonal represents the shares
who stay on the same alternative. The only transitions are from car to other
modes. This is because car is the only alternative that undergoes a change
in systematic utility, for the combined effect of the congestion charge and the
changed travel time.

Table 3 shows the values of the average benefit for the full population, for
the sub-populations of shifters and non-shifters (based on Eq. 20), for the sub-
populations of those who choose a given alternative in the state without policy
(based on Eq. 21) and in the state with policy (based on Eq. 22). Since we
have no income effect, the average benefit for the full population is given by the
monetized logsum of Eq. (5) and equals -1.500 EUR/trip. The rule-of-a-half of
Eq. (8) yields -1.498 EUR/trip.
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Table 2: Transition probabilities (%)

1 2 3 4 5 without
1 51.3 2.1 0.5 9.2 0.2 63.3
2 0.0 6.5 0.0 0.0 0.0 6.5
3 0.0 0.0 1.7 0.0 0.0 1.7
4 0.0 0.0 0.0 28.0 0.0 28.0
5 0.0 0.0 0.0 0.0 0.5 0.5

with 51.3 8.6 2.2 37.2 0.7 100.0

Table 3: Average benefit of the charging policy (EUR/trip)

1 2 3 4 5 without
1 -2.615 -1.323 -1.323 -1.323 -1.323 -2.370
2 - 0.000 - - - 0.000
3 - - 0.000 - - 0.000
4 - - - 0.000 - 0.000
5 - - - - 0.000 0.000

with -2.615 -0.326 -0.326 -0.326 -0.326 -1.500

Using the results in Section 5, we constructed the north-west and north-
east charts in Figure 4. The north-west chart shows the c.d.f. of cv1→, the
compensating variation of those who choose alternative 1 in the state without.
The north-east chart shows the c.d.f. of cv2→, cv3→, cv4→ and cv5→. In all cases
we have a step function. For cv1→, the c.d.f. is 0 for values < ψ11 = −2.615.
At the abscissa −2.615 there is a step. The probability that the compensating
variation cv1→ takes exactly the value ψ11 = −2.615 is Φ1→ (ψ11) = 81.1%.
Indeed, the c.d.f. is continuous from the right. As to cv2→, cv3→, cv4→ and
cv5→, since their support is the point ψii = 0, i = 2, ..., 5, their c.d.f. reduces
to a point of abscissa equal to 0 and ordinate equal to 1. The charts are based
on Eq. 23. The c.d.f. of the unconditional compensating variation cv is shown
in the south-west chart of Figure 4. Since the support of the c.d.f. of cv is
−2.615 ≤ cv ≤ 0, there are only losers from the policy. The chart is based on
Eq. 24.

The Lorenz curve for the distribution of the unconditional compensating
variation is shown in the south-east chart of Figure 4. The chart shows an esti-
mate of the Lorenz curve, obtained analytically by linearizing the curved tract
of the distribution of the compensating variation. This is based on Proposition
1. The Gini coefficient associated with the random compensating variation,
computed by simulation with one million draws, is 0.424. This is based on
Proposition 2.
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Figure 4: c.d.f. of cv1→ (north-west), cv2→, cv3→, cv4→, and cv5→(north-east), cv (south-west), and Lorenz curve of cv (south-east) for the
illustrative example
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8. Conclusion

The apparatus developed in microeconomics for the measurement of welfare
in the divisible goods case has been adapted to discrete choice models. The ap-
proach to welfare change measurement that is considered mainstream, because
of the consistency with the theory of random utility, is based on the expectation
of the compensating variation. For multinomial logit without income effect, the
expectation of the compensating variation reduces to the popular monetized
logsum, which proves to be a robust formula because it holds even for chang-
ing random terms. The paper has shown, with an illustrative application, that
the recent theoretical developments in welfare measurement for ARUMs can
improve the practice of assessment of transportation users’ benefits.

The computation of the expectation of the compensating variation by numer-
ical integration is possible today also with income effect, without the need for
computationally demanding simulations. The problem of attributing benefits to
shifters and non shifters is used to be treated on the basis of the rule-of-a-half.
This considers a conventional attribution of benefits to distinct alternatives as
well as to non shifters and to new and lost demand. Today, a rigorous solution
to the benefit attribution problem, based on random utility theory and using
numerical integration without simulation, is available. The approach is able to
compute exactly the shifts in demand among pairs of alternatives and to at-
tribute the respective welfare change. It is applicable to both cases without and
with income effect, while the rule-of-a-half applies only without income effect.

Knowledge of the distribution of the compensating variation allows the es-
timation of the shares of winners and losers, and makes inequality analysis
possible using numerical methods to compute the Lorenz curve and simulation
to compute the Gini coefficient. The application of inequality analysis in the
mixed case of both negative and positive welfare change has been presented in
the paper. The approach is based on distinct analyses for losses and for gains. A
different approach to inequality analysis considers inequality with respect to the
sum of income and the equivalent variation, rather than to the compensating
variation only. If the welfare change is small enough then the sum of income and
the equivalent variation is positive and the conventional definitions, with pos-
itive wealth, of Lorenz curve and Gini coefficient apply. Research that adopts
this approach and provides the Lorenz curve and Gini coefficient analytically
for general ARUMs is ongoing (de Palma et al., 2021).

The welfare inequality analysis has been a first new theoretical contribution
of the paper. The second one has been related to the aggregate welfare anal-
ysis in the presence of observed and unobserved heterogeneity. These and the
other theoretical findings from literature can be implemented in a relatively easy
way in software packages that may assist the researcher and the practitioner
in project and policy assessment tasks. As seen, the random compensating
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variation is given prominence in the literature. Without income effect, the ex-
pectation of the compensating variation equals the expectation of the equivalent
variation (Delle Site, 2021). Further findings related to the equivalent variation,
similar to those existent for the compensating variation, are an objective for fu-
ture research.

Appendix A. Classical microeconomics

This Appendix deals with the microeconomics of divisible goods and is based
on Mas-Colell et al. (1995) and Takayama (1994). The Appendix reports on
main results. Proofs are found in the two references. Additional references are
added where relevant.

Consider the behaviour of a consumer who is assumed to maximize a function
of the quantities of M goods subject to a budget constraint:

max
x

U (x) ,

s.t.
M∑
k=0

rkxk ≤ y,

where U (·) is the direct utility, x = (x0, x1, ..., xM) is the row vector of quantities
of goods, r = (r0, r1, ..., rM) is the row vector of the prices of goods and y is
income. Prices and income are deflated by the price r0 of the numéraire. If we
assume r0 = 1, then x0 can be interpreted as expenditure on all other goods in
the economy. If preferences are locally non satiated (for any bundle of goods
there is always another bundle of goods arbitrarily close that is preferred to it,
a condition implied by monotonicity of preferences), the budget constraint is
satisfied as equality.

We define indirect utility the function of prices and income:

V (r, y) = max
{
U (x) :

M∑
k=0

rkxk = y

}
,

and (Marshallian) demands the functions of prices and income:

x (r, y) = argx max
{
U (x) :

M∑
k=0

rkxk = y

}
.

The indirect utility is continuous in prices and income, non increasing in
prices, non decreasing in income, homogenous of degree zero in prices and in-
come (no money illusion), quasi-convex in prices and income. Roy’s identity
establishes the relationship between indirect utility and demand functions:

xk (r, y) = −∂V (r, y) /∂rk
∂V (r, y) /∂y , k = 0, 1...M.
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Consider now a change of price of one good only: r′k → r′′k , k 6= 0. We define
variation of consumer’s surplus:

4S (r′k, r′′k) = −
∫ r′′k

r′
k

xk (r, y) drk. (25)

In this case, consumer’s surplus has a nice interpretation which is based on
Figure 5. Consider the inverse of the demand function, i.e. the demand price,
or, in other words, the maximum price the consumer is willing to pay for a
given quantity. Surplus is the difference between the total willingness-to-pay
and what is actually paid. The integral in Eq. (25) represents the variation in
this difference when price changes.

Figure 5: Surplus variation: change in price of one good only

Consider that a change occurs in the price of all goods except the numéraire:
r′ = (r′1, ..., r′M) → r′′ = (r′′1 , ..., r′′M), while income is unchanged. The variation
of consumer’s surplus is defined by the so-called Hotelling integral (Hotelling,
1938):

4S (r′, r′′) = −
∫ r′′

r′

M∑
k=1

xk (r, y) drk. (26)

This line integral, in general, is path dependent and does not have any
economic meaning per se. Therefore, it cannot be a valid measure of welfare
change. A remarkable case where the line integral is path independent and is a
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valid measure of welfare change is the one of quasi-linear preferences:

V (r, y) = a (r) + y/r0;
∂xk (r, y)

∂y
= 0, k = 1...M ; (27)

x0 (r, y) = y −
M∑
k=1

pkxk (r) .

Eq. (21) say that there is no income effect on the demand of all goods but
the numéraire. In this case, the marginal utility of income is independent of
income and of prices of all goods except the numéraire (the marginal utility of
income cannot be constant for all values of income and prices):

∂V (r, y)
∂y

= 1
r0
.

If we consider the change in prices r′ → r′′, with quasi-linear preferences the
Hotelling surplus line integral is path independent and is a valid measure of
welfare change because it is proportional to the variation of the indirect utility:

4S (r′, r′′) = −
∫ r′′

r′

M∑
k=1

xk (r, y) drk = r0 [V (r0, r′′, y)− V (r0, r′, y)] .

As shown byWilliams (1976), the rule-of-a-half is the approximation of4S (r′, r′′)
that is obtained from the Hotelling surplus line integral (26) if the path of inte-
gration is the segment between the points r′ and r′′ and the demand functions
are linearized:

4S (r′, r′′) ∼=
1
2

M∑
k=1

[xk (r0, r′, y) + xk (r0, r′′, y)] (r′k − r′′k) .

We define compensating variation CV the expenditure to be subtracted from
the consumer’s income in the state with the change to bring her to the state
without the change:

V (r0, r′, y) = V (r0, r′′, y − CV ) .
We define equivalent variation EV the expenditure to be added to the con-

sumer’s income in the state without the change to bring her to the state with
the change:

V (r0, r′, y + EV ) = V (r0, r′′, y) .
The compensating and equivalent variations do not suffer from the limita-

tions of consumer’s surplus: they are always valid measures of welfare change
by definition. If preferences are quasi-linear we have:
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CV = EV = ∆S (r′, r′′) .

We define the expenditure function of prices and utility:

e (r, U) = min
{

M∑
k=0

rkxk : U (x) ≥ U

}
,

and the compensated or Hicksian demand functions of prices and utility:

xc (r, U) = argx min
{

M∑
k=0

rkxk : U (x) ≥ U

}
.

The compensating variation can also be expressed as the difference between
the minimum expenditure needed to reach utility U ′ in the state without change
with unchanged prices and the minimum expenditure needed to reach utility U ′
in the state without change with changed prices:

CV = e (r0, r′, U ′)− e (r0, r′′, U ′) = y − e (r0, r′′, U ′) .

Up to this point we have considered the individual consumer. We move now
to the problem of aggregation.

Consider a population of consumers n = 1, ..., N with heterogenous income
yn, n = 1, ..., N . Aggregate demand can be written as function of aggregate
income Y = ∑N

n=1 yn if and only if the individual preferences have the Gorman
polar form with the coefficient on income yn the same for every consumer n, i.e.
if and only if the indirect utility of the individual consumer has the form:

Vn = an (r) + b (r) yn, n = 1...N.

where an (r) , n = 1, ..., N, and b (r) denote functions of r.
It is said that a positive representative consumer exists. Quasi-linear pref-

erences satisfy the Gorman polar form.
When the preferences of the individual consumers have the Gorman polar

form with common coefficient b (r) and a utilitarian social welfare function is
adopted, i.e. the sum of the indirect utilities of the individual consumers, then
aggregate demand can be used to make welfare judgements by means of the
techniques used for the individual consumer. It is said that a normative repre-
sentative consumer exists. The aggregate indirect utility is in this case simply
given by:

V (r, Y ) =
N∑
n=1

an (r) + b (r)Y.
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Appendix B. Theoretical justification of econometric specifications

Different functional forms of the systematic utilities are used in applied
work. One may wish to find a theoretical justification of the form that is
used. Following the microeconomic foundation of discrete choice random utility
models proposed by McFadden (1981), and further developed in Jara-Díaz and
Farah (1988) and Jara-Díaz and Videla (1989), the systematic utility of each
alternative is a conditional indirect utility.

The formulation of the model of consumer’s behaviour is as follows. Assume
the notation: U is the direct utility, x = (x1, ..., xM) is the row vector of the
quantities of divisible goods, r = (r1, ..., rM) is the row vector of the prices of
divisible goods, pj is the price of the discrete alternative j, qj is a vector of
qualitative attributes of j, and y is income. Preliminarily, we notice that all
prices and income are deflated by the price of a numéraire.

In the first step, we have the conditional on the choice of alternative j
maximization problem:

max
x

U (x, j,qj) , (28)

s.t.
M∑
k=1

rkxk + pj = y.

Assume now that the direct utility is additively separable in (x, j) and qj.
The assumption implies ∂2U/ (∂xk∂qjs) = 0, ∀k, s. Thus we can re-write Eq.
(22) as:

max
x

U (x, j,qj) = max
x

U1 (x, j) + U2 (qj) . (29)

Given the conditional demand functions:

x = x (r, pj, y) ,

by substitution into Eq. (29), we get the conditional indirect utility function:

Vj = V1j (r, pj, y) + U2 (qj) , j = 1...J,

where J denotes the number of discrete alternatives.
To qualify as an indirect utility, the component V1j (r, pj, y) needs to be

continuous in prices and income, non increasing in prices, non decreasing in
income, homogenous of degree zero in prices and income, quasi-convex in prices
and income.

Assume now that V1j is additively separable in r and (pj, y), with the com-
ponent in r independent of the discrete alternative. We get:

Vj = a (r) + wj (pj, y) + vj, j = 1...J.
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where a (r) denotes a function of r, wj (pj, y) denotes a function of pj and y,
vj = U2 (qj).

In the second step, we have the unconditional problem that seeks the alter-
native that maximizes the portion of Vj given by vj = wj (pj, y) + vj. Notice
that, by conditioning on the chosen alternative, wj (pj, y) needs to satisfy Roy’s
identity:

−∂wj/∂pj
∂wj/∂y

= 1, j = 1...J. (30)

Roy’s identity poses limitations on the functional form of wj. Indeed, Eq.
(30) can be written as:

∂wj
∂pj

+ ∂wj
∂y

= 0, j = 1...J. (31)

Eq. (31) is the partial differential equation known in physics as advection
or transport equation (when a substance is carried along a flow). A function
wj (pj, y) is a solution of Eq. (31) if and only if it satisfies (LeVeque, 2007; p.
202):

wj = wj [± (y − pj)] , j = 1...J.

This means that we may admit only functional forms of wj in plus/minus
residual income y − pj, a condition that may be violated by econometric speci-
fications. This circumstance has led Viton (1985) to investigate the consistency
between the microeconomic foundation and the econometric specification of ran-
dom utility models, and to argue that, to restore consistency, income variables
appearing in the specification may need to be re-interpreted, as an example as
proxy for tastes rather than as true expenditure entering the budget constraint.
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