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Abstract

We consider a regulator willing to drive individual choices towards increasing social welfare by providing incentives

to a large population of individuals.

For that purpose, we formalize and solve the problem of finding an optimal personalized-incentive policy: optimal

in the sense that it maximizes social welfare under an incentive budget constraint, personalized in the sense that the

incentives proposed depend on the alternatives available to each individual, as well as her preferences. We propose

a polynomial time approximation algorithm that computes a policy within few seconds and we analytically prove

that it is boundedly close to the optimum. We then extend the problem to efficiently calculate the Maximum Social

Welfare Curve, which gives the maximum social welfare achievable for a range of incentive budgets (not just one

value). This curve is a valuable practical tool for the regulator to determine the right incentive budget to invest.

We then extend our formulation to a class of more general policies, including enforcement, taxation and non-

personalized-incentive policies. We analytically show that our personalized-incentive policy is optimal also within

this larger class of policies. We also show that our algorithm can be used to construct close-to-optimal enforcement

and proportional tax-subsidy policies. We then compare our policy with other state-of-the-art incentive policies

and show its gains, both analytically and numerically.

Finally, we simulate a large-scale application to mode choice in a French department (about 200 thousands

individuals) and illustrate the effectiveness of the proposed personalized-incentive policy in reducing CO2 emissions.

We are aware that our framework is based on several idealized assumptions that makes its direct applicability

difficult in practical situations, in particular for what concerns the assumption of being able to collect precise

information about individual preferences. In this sense, the path toward personalized-incentives is still a long way

to go. However, we argue that the theoretical findings of this paper, coupled with the continuous evolution of

techniques for collecting societal big-data, while respecting privacy, provide important steps along this path.

Keywords: Personalized incentives; Knapsack problem; Tax policy; CO2 emissions; Modal shift.
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1. Introduction

Taxes and subsidies in transportation are often perceived by the population as unfair, since they neglect the

alternatives actually available to each individual and the individual preferences. For example, car commuters

typically pay the same fuel tax whether they are driving in a dense area such as Paris, with many transportation

1THEMA, CY Cergy Paris University
2Telecom SudParis, Institut Polytechnique de Paris

Preprint submitted to Transportation Research Board Part B: Methodological March 3, 2021



alternatives, or in a rural area where public transit is not available. This is one of the arguments behind the surge5

of the yellow vests movement, in France, against an increase of carbon tax on fuel, that would penalize poor people

living in rural areas and driving old fuel-inefficient cars (see e.g., Bureau et al., 2019).

On the other hand, with the increase in information available to governments (Clarke and Margetts, 2014),

economic policies can be improved to consider the peculiarities of each individual. Customized policies could be

used to align the individual cost with the social cost in the individuals’ decisions, without penalizing anyone. We10

do not discuss here the legal dimension of such policies (which should be debated in the political arena).

We propose a policy of personalized incentives in a framework where individuals choose between multiple alter-

natives (or options). A benevolent regulator has a limited budget that he can use to propose monetary incentives,

with the goal to induce individuals to change their choice toward socially-better ones. The policy we present is fair

in the sense that no individual increases or decreases her utility. This is a clear advantage over road pricing, the15

most deployed demand management scheme, which usually decreases the utility of some individuals.

Consider a regulator aiming to induce car buyers to choose more environmentally-friendly car models. Suppose

that two buyers, A and B, both consider buying a car with high CO2 emissions and suppose that buyer A (resp.

buyer B) can be convinced to buy instead a car with low CO2 emissions if she gets a discount of $2000 (resp. of

$5000). With the policy of personalized incentives envisaged in this paper, the regulator could give $2000 (resp.20

$5000) to buyer A (resp. to buyer B) if she accepts to buy the low-emission car. In this simple example, the regulator

could convince the two buyers to choose the low-emission car for only $7000 ($2000 to buyer A and $5000 to buyer

B), while, with a non-personalized subsidy policy, the regulator would need to spend at least $10 000 to convince

both buyers (each buyer receives $5000). Hence, a personalized-incentive policy allows to reduce the average CO2

emissions by the same amount than a non-personalized policy, while spending less.25

We define the optimal personalized-incentive policy as the allocation of incentives that maximizes social welfare

(defined as the reduction of CO2 emissions in the example above), for a given budget. With two cars and two

buyers, the optimal policy is easy to compute by simple enumeration. However, the problem is combinatorial so,

with a large number of heterogeneous buyers and a large number of car models to choose from, we need more

sophisticated methods.30

We formalize the problem of finding a personalized-incentive policy maximizing social welfare under the regula-

tor’s budget constraint and show that it reduces to the well-known Multiple-Choice Knapsack Problem (Section 3).

To approximate the optimal policy in polynomial time, we adapt a greedy algorithm from the Operations Research

literature and we analyze some of its analytical (e.g., suboptimality gap bound) and economic (e.g., diminishing

returns) properties (Section 4).35

We then frame personalized-incentive policies into a larger family of demand management policies, including

enforcement, tax and non-personalized-incentives (Section 5). These policies aim to maximize social welfare subject

to a disutility constraint, where the disutility is the total loss of surplus for both the regulator and the individuals.

We find that personalized-incentive policies are optimal within this larger family of policies. Moreover, they are

“fair”, since they guarantee that the utility of each individual remains unchanged, and thus no one is penalized.40

We also compute a theoretical lower bound on the gap between state-of-the-art incentive policies, which are not

personalized, and our personalized-incentive policy. Furthermore, we show that our greedy algorithm can not only
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construct incentive policies, but also enforcement and proportional tax-subsidy policies. We show that also in this

case, the social welfare is boundedly close to the theoretical optimum. While in most of the paper we assume that

the regulator knows exactly the preferences of each individual, we also study the case of imperfect information45

(Section 6).

Using data from the French census, we evaluate the CO2 reduction achieved via the policy computed with our

algorithm in a large-scale use-case, where individuals are incentivized to shift toward greener transportation modes

for their commute to work, at the scale of a French department (Section 7). The results confirm the theoretical

findings, showing in particular that our personalized incentives achieve the same CO2 reduction as flat subsidies,50

but with a considerably smaller amount of incentives spent. Our code is available as open source.3

Even though the case study is about modal shift, the proposed methods can be applied in various contexts.

For example, consider the marketing department of a large firm selling mutually exclusive goods. To increase the

profits of the firm, the marketing department could use its budget to propose price discounts to some consumers in

order to convince them to shift to goods with higher margins. Another potential example of application is in the55

telecommunications management context. In recent years, governments are planning to subsidize local organizations

to improve the access of rural population to the Internet (France alone will spend 3 billions euros in 10 years, Arcep,

2021). With our methods, governments could allocate optimally these subsidies.

2. Related Work

We first discuss the literature on incentive policies (Section 2.1), in particular in transportation, which is the60

main application domain we envision. We then review the applications of the Multiple Choice Knapsack Problem,

on which our optimization is based, in economics and transportation (Section 2.2) and, finally, in other domains

(Section 2.3).

2.1. Incentive Policies in Transportation

Earlier studies of welfare analysis in a discrete-choice framework have been conducted by Small and Rosen65

(1981) and Anderson et al. (1992). De Borger (2001) studies the optimal taxation in a discrete-choice framework

with externalities. His model is close to ours but he does not consider incentive policies. Some papers conduct an

empirical study of an incentive policy in the transportation context (e.g., Merugu et al., 2009, Ettema et al., 2010,

Yue et al., 2015, Hu et al., 2015) but they do not carry out a theoretical study of the optimal policy.

Incentives are a promising tool for policy makers to trigger a transition toward greener transportation. Mirhe-70

dayatian and Yan (2018) model the reaction of a single logistics company to several incentives for buying and

adopting electric vehicles. We are interested instead in calculating optimal incentives for a large plethora of indi-

viduals. A vast literature exists on time-varying incentives and/or surcharges to shift departure times, in order to

reduce congestion. To this aim, Sun et al. (2020) adopt a bottleneck model of a road segment. Tang et al. (2020)

propose an optimization model to calculate transit surcharges and incentives, during peak and off-peak, respectively,75

to avoid over-crowding. In the two aforementioned works, the incentives are not personalized, in that they do not

3https://github.com/LucasJavaudin/individualized-incentives-algorithm
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depend on the individual’s profile and all the individuals go from the same origin to the same destination. We

instead consider a large set of individuals, each with a different set of alternatives, resulting in different contribu-

tions to the social welfare and individual perceived utility. Our incentives are personalized, in that we encourage

social-welfare maximizing alternatives with an incentive that compensate for the reduction in individual utility loss,80

which changes from an individual to another.

Closer to our work, Araldo et al. (2019) devise Tripod, a simulation-based optimization method to calculate

incentives to encourage energy efficient transportation alternatives. However, the incentives do not depend on

individual specificities. Indeed, the system computes a unique “Token Energy Efficiency” (TEE) value, and computes

the incentive for each alternative by simply multiplying the TEE by the estimated energy savings achieved with85

that alternative. Such approach is pertinent when the regulator has no information on the individual preferences.

However, when perfect information is available, our approach is able to achieve the same social welfare of Tripod

with less incentives spent or, equivalently, to achieve a larger social welfare with the same incentives spent. We

show these findings both analytically (Section 5.2.3) and numerically (Section 7.6).

2.2. Multiple Choice Knapsack Problem in Economics and Transportation90

The Multiple Choice Knapsack Problem (MCKP – Kellerer et al., 2004, chap. 11) can be used to model a

decision maker willing to optimally invest a limited budget in order to increase an objective function. The possible

investments options are divided into separate groups, and the decision maker has to choose at most one option for

each group.

We now review the few examples of applications of MCKP in Economics and Transportation. Zhong and Young95

(2010) study the decision of a transportation planner willing to select a subset of candidate projects for funding.

They do not propose any resolution algorithm and solve the problem in an exact way using a solver. Later, Colorni

et al. (2017) use MCKP as a subroutine of a more general multi-criteria project-selection problem. Since the problem

is NP hard (Kellerer et al., 2004, chap. 11), the aforementioned exact approach would require an unfeasibly large

computation time in the large-scale applications we target. For this reason, we resort instead to a polynomial time100

approximation algorithm. Zoltners et al. (1979, Sec. 6 and 7) use MCKP as a subroutine for a problem where a

sales representative with a finite time-budget has to optimally allocate a call frequency to each accounts. They

solve such a subroutine with an algorithm similar in spirit to our Algorithm 1, but in a more complicated setting,

due to iterating decisions over multiple time-slots.

2.3. Multiple Choice Knapsack Problem in Computer Science and other Domains105

MKCP is widely adopted in the Computer Science community, where a certain resource must be allocated

among different entities. In the work of Cao et al. (2015), a central information aggregator receives information

from several selfish sensors, which can transmit it at several precision levels: the more the precision level the higher

the sensor cost in terms of energy. The aggregator needs to select one precision level (or none) per sensor and

compensates the corresponding loss of energy of each sensor via payments. In Fielder et al. (2016), a manager of110

an information system invests in security controls. Per each control, it has to select a certain “level”: the higher the

level, the higher the protection of the organization, but also the higher the investment. Araldo et al. (2020) allocate
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computational resources among different service providers; the owner of the resources selects one configuration for

each of them in order to increase the overall system utility. To this aim, they use Multi-Dimensional Multiple-Node

MCKP. Mohammadivojdan and Geunes (2018) solve the problem of a seller, who needs to decide the amount of115

product to buy from several providers, each proposing a different pricing scheme, in order to maximize its overall

utility.

2.4. Position with respect to the Related Work

To the best of our knowledge, we are the first to formalize the problem of computing optimal personalized-

incentives with MCKP. By finding the assumptions that enable such a formalization, we show in this paper that120

MCKP describes naturally such a problem, since it manages to represent the different alternatives of each individual.

The adoption of MCKP also allows us to devise an efficient algorithm for large-scale applications, adapting existing

solutions from Operations Research.

3. Framework and Personalized-Incentive Policy

In this section, we first formalize the model studied and present the underlying assumptions (Section 3.1). We125

also characterize the personalized-incentive policy that will be studied throughout this paper (Section 3.2). We

then present the Maximum Social Welfare Problem, which consists in finding the optimal incentive policy under a

budget constraint (Section 3.3). Finally, we present the Maximum Social Welfare Curve problem, which solves the

previous problem for a range of budget values (Section 3.4).

The notations used throughout this paper are summarized in Table 1. All the proofs are relegated to Appendix130

B.

3.1. Model and Assumptions

We consider a population I ≡ {1, . . . ,m} of m individuals. Each individual i ∈ I chooses an alternative j

among an individual-specific choice-set Ni. For example, we can consider individuals choosing a mode of trans-

portation to commute to their work. In this case, the choice set could be Ni = {car,walk,bike, public transit}. The135

choice set can be individual-specific so that if individual i owns a car but individual i′ does not, we could have

Ni = {car,walk, bike,public transit} and Ni′ = {walk, bike, public transit}. The mode-choice example is studied

extensively in Section 7. As another example, I could be a set of individuals purchasing a car. In this case, the set

of alternatives Ni of individual i would include the models of cars available in the market.

Let zi,j ∈ R be a monetary transfer, from the regulator to individual i, induced when she chooses alternative j.140

This monetary transfer can be an incentive, if positive, or a tax, if negative. Any policy can thus be described by a

set of monetary transfers proposed to all the individuals for any of their alternatives, which we compactly denote

with z ≡ {zi,j}i,j .
A policy influences the individual choice since the proposed monetary transfers change her utilities.

The utility Ui,j(z) of individual i when choosing alternative j ∈ Ni is given by

Ui,j(z) = Vi,j + zi,j , (1)
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Table 1: Notation used throughout the paper.

i Index to denote an individual

j Index to denote an alternative

[i, j] Alternative j of individual i

I, m Set of individuals and number of individuals

Ni Set of alternatives available to individual i

Vi,j Intrinsic utility of individual i when choosing alternative j

bi,j Social indicator of alternative j of individual i

zi,j Monetary transfer received (or paid) by individual i when choosing alternative j

z General policy (set {zi,j}i,j of monetary transfers)

yi,j Personalized incentive proposed to individual i, conditional on choosing alternative j

y Personalized-incentive policy (set {yi,j}i,j of incentives)

Y Set of all personalized-incentive policies

Ui,j(z) Utility of individual i when choosing alternative j, given policy z (1)

j∗i (z) Alternative chosen by individual i, given policy z

j∗i (0) Default alternative, i.e., alternative chosen by individual i, in the absence of policy (5)

wi,j Weight of alternative j of individual i, equation (8)

ei,j Efficiency of alternative j of individual i (Definition 4.1.1)

Q Maximum budget available to the regulator

Q̃ Budget actually spent by the policy computed by Algorithm 1

B∗(Y ) Maximum social welfare reachable with a personalized-incentive policy,

with a total incentive expenditure of Y

B(Y ) Social welfare obtained with the personalized-incentive policy produced by our algorithm,

with a total incentive expenditure of Y

B(z) Social welfare achieved with a policy z, equation (2)

Y (z) Expenses of the regulator for a policy z, equation (3)

∆U(z) Total variation in individual utility of a policy z, equation (18)

δ(z) Disutility of policy z, equation (19)

Ri ⊆ Ni, ri = |Ri| Set of LP-extremes alternatives of individual i, and its cardinality

b̃i,j Incremental social indicator of the alternative j of individual i

w̃i,j Incremental incentive of the alternative j of individual i

ẽi,j Incremental efficiency of the alternative j of individual i

ẽs,t Incremental efficiency of the split item (Algorithm 1)

k Iteration index of Algorithm 1

e[k], ẽ[k] Overall and incremental efficiency of Algorithm 1 at iteration k (Definition 4.3.4)

τ Tax level (Section 5.2.2)

Ai Baseline social-indicator of individual i (Section 5.2.2)
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where Vi,j ∈ R is the intrinsic utility (in the absence of policy). We implicitly assumed that utility is quasi-linear145

with respect to income, which means that both Vi,j and zi,j are expressed in the same unit as income and that zi,j

has an additive effect on utility, hence equation (1).

Given a policy z, each individual i chooses an alternative j∗i (z) which maximizes her utility:

j∗i (z) ∈ arg max
j

Ui,j(z).

We consider a regulator aiming to maximize a social welfare indicator, whose value depends on the individuals’

choices. More formally, each alternative j of individual i is characterized by a social indicator bi,j ∈ R. In the

mode-choice example, the social indicator could be the opposite of CO2 emissions induced by the commutes.150

The goal of the regulator is to find a policy z which maximizes the global social indicator, or social welfare

indicator, defined by

B(z) ≡
m∑

i=1

bi,j∗i (z), (2)

i.e., the sum of the social indicators of the alternatives chosen by the individuals. Intuitively, a policy z which

maximizes welfare could be

zi,j =





0 if j ∈ arg maxj′ bi,j′

−∞ else
, ∀i, j,

which is equivalent to a ban of all alternatives that do not maximize the social indicator for each individual.

However, in practice, the regulator is affected by some political constraints and such extreme policy is not feasible.

Definition 3.1.1 (Expenses). For any policy z, we define the expenses Y (z) of the regulator (or his revenues

−Y (z)) as

Y (z) ≡
m∑

i=1

zi,j∗i (z), (3)

i.e., the sum of the monetary transfers paid or received for the alternative j∗i (z) chosen by each individual i.

The following assumptions are made. First, we assume that individuals cannot affect each other’s intrinsic

utility.155

Assumption 3.1.2 (Indepndent intrinsic utilities). Given a policy z, for each individual i and each alternative

j ∈ Ni, the intrinsic utility Vi,j is independent of the alternative j∗i′(z) chosen by any other individual i′ 6= i.

Similarly, we assume that the social indicator of the alternatives is independent of the choices of the individuals.

Assumption 3.1.3 (Independent social indicators). Given a policy z, for each individual i and each alter-

native j ∈ Ni, the social indicator bi,j is independent of the alternative j∗i′(z) chosen by any other individual160

i′ 6= i.

We further assume that the utilities and social indicators are known to the regulator.

Assumption 3.1.4 (Perfect information). The regulator has perfect information: it knows exactly the intrinsic

utilities {Vi,j}i,j and social indicators {bi,j}i,j of all the alternatives, for all the individuals.
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In Section 7, we discuss the implications of these assumptions in the context of mode choice and we show how to165

relax the latter by assuming that the intrinsic utilities {Vi,j}i,j are imperfectly known to the regulator.

With no loss of generality, we rule out identical alternatives.

Assumption 3.1.5 (No identical alternatives). We assume that, for any individual i, there are no identical

alternatives j, j′ ∈ Ni, i.e., such that Vi,j = Vi,j′ and bi,j = bi,j′ .

We need to characterize more precisely the behavior of individuals when multiple alternatives maximize their170

utility.

Assumption 3.1.6 (Tie-breaking rule). For any policy z, if the set arg maxj Ui,j(z) contains more than one

alternative, individual i chooses the alternative j′ with the largest social indicator, i.e.,

j∗i (z) = arg max
j′∈argmaxj Ui,j(z)

bi,j′ . (4)

The previous assumption is merely a technical assumption that could be relaxed by proposing incentives infinitesi-

mally larger to ensure that the set arg maxj Ui,j(z) is always a singleton.

The alternative chosen by each individual i in the absence of policy (i.e., where zi,j = 0, ∀i, j) is called default

alternative, and denoted j∗i (0). Under Assumption 3.1.6, the default alternative is given by

j∗i (0) ≡ arg max
j′∈argmaxj Vi,j

bi,j′ . (5)

3.2. Personalized-Incentive Policies

We assume that the space of policies available to the regulator is limited to policies such that zi,j ≥ 0, for each

alternative j and individual i. In other words, the regulator never taxes alternatives, for some political reasons.

Note that we allow the regulator to give different monetary transfers to different individuals for the same alternative

(e.g., some individuals might receive $2 for commuting by foot, while others may only receive $1). Hence, this space

of policies is referred to as the set of personalized-incentive policies, denoted Y. To distinguish personalized-incentive

policies from more general policies, we denote them with y = {yi,j}i,j , where yi,j is the incentive given to individual

i, conditional on her choosing alternative j, and thus,

Y =
{
y = {yi,j}i,j : yi,j ≥ 0, ∀i, j

}
.

The incentive yi,j reduces the budget of the regulator only if individual i chooses alternative j. Therefore, if the

regulator wants to spend at most a budget Q, the budget constraint can be written as

Y (y) =

m∑

i=1

yi,j∗i (y) ≤ Q,

where j∗i (y) is the alternative chosen by individual i under the personalized-incentive policy j∗i (y).175

In the rest of this subsection, we characterize more precisely the set of policies we consider, discarding “inefficient”

policies.
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Proposition 3.2.1. The regulator can induce any individual i ∈ I to shift from her default alternative j∗i (0) to

any alternative j ∈ Ni, with a higher social indicator (i.e., bi,j > bi,j∗i (0)), by proposing the following incentives

yi,j = Vi,j∗i (0) − Vi,j ,
yi,j′ = 0, for any other alternative j′ 6= j

(6)

Additionally, yi,j, defined above, is the minimum incentive required to induce individual i to shift to alternative j.

Such a proposition tells us that it suffices to incentivize only one alternative per individual and no more than

that. Therefore, we can limit the space of the studied personalized-incentive policies as in the following assumption,180

with no loss of generality.

Assumption 3.2.2. We only study in this paper personalized-incentive policies that propose incentives in the form

of (6), i.e., only one alternative j per individual i is incentivized, with an incentive equal to yi,j = Vi,j∗i (0) − Vi,j .

Remark 3.2.3. If an individual i is given an incentive yi,j , given by (6), to shift to alternative j, then her utility

Ui,j(y) remains unchanged since, from equation (1),

Ui,j(y) = Vi,j + Vi,j∗i (0) − Vi,j︸ ︷︷ ︸
yi,j

= Vi,j∗i (0).

In other words, the incentive amount is such that the utility of the individual does not change. In this sense, our

approach is fully equitable.185

With no loss of generality, we can remove from any individual choice-set the alternatives that are never chosen,

as the ones defined below.

Proposition 3.2.4 (Pareto-dominance). Let us consider individual i facing two alternatives j, j′ ∈ Ni. Alternative
j is said to be Pareto-dominated by j′ if bi,j′ ≥ bi,j and Vi,j′ > Vi,j. Alternative j is Pareto-dominated, if it is

Pareto-dominated by some other alternative.190

A personalized-incentive policy y that intentivizes a Pareto-dominated alternative can be discarded, since there

always exists another policy that obtains at least the same social welfare, by spending less budget.

We thus exclude Pareto-dominated alternatives from the choice-set Ni of each individual i, as they would never

be chosen by individuals, under the considered policies.

Assumption 3.2.5 (No Pareto-dominated alternatives). For any individual i, there are no Pareto-dominated195

alternatives in her set of alternatives Ni.

3.3. Maximum Social Welfare Problem

We can now formally define the optimization problem of the regulator, who chooses the personalized-incentive

policy y = {yi,j}i,j which maximizes social welfare under his budget constraint. We refer to this problem as

Maximum Social Welfare Problem:




max
y∈Y

B(y)

s.t. Y (y) ≤ Q
yi,j ≥ 0, ∀i ∈ I, j ∈ Ni

. (7)
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Definition 3.3.1 (Optimal personalized-incentive policy). An optimal personalized-incentive policy y, for a

budget Q, is a solution of Problem 7.

We denote with {j1, . . . , jm} a chosen-alternative set, where ji denotes the alternative chosen by individual i ∈ I.200

According to Proposition 3.2.1, the regulator can induce any chosen-alternative set {j1, . . . , jm} by proposing to

any individual i the incentives yi,ji = Vi,j∗i (0) − Vi,ji and yi,j = 0, for any j 6= ji. Thanks to the same proposition,

the regulator cannot induce this set of alternatives by spending less. Therefore, the optimization problem of the

regulator (7) amounts to finding the chosen-alternative set {j1, . . . , jm} which maximizes social welfare
∑m
i=1 bi,ji ,

subject to the constraint that the corresponding spendings
∑m
i=1 yi,ji must not exceed the budget Q.205

Such a problem can be expressed as an Integer Linear Program (ILP). In order to do so, we introduce a weight

wi,j for any alternative j ∈ Ni of individual i. The weight is defined as the incentive amount that would be proposed

to individual i if the regulator were to induce her to choose alternative j, which is, according to Proposition 3.2.1,

wi,j ≡ Vi,j∗i (0) − Vi,j , ∀i, j. (8)

Note that wi,j is a fixed value that we used to compute the optimal policy, while yi,j represents the incentive

amount chosen by the regulator. The personalized-incentive policy is such that yi,j = wi,j , if individual i is induced

to choose alternative j, and yi,j = 0 otherwise.

We introduce the binary decision variable xi,j that is equal to 1 if the regulator wants to make individual i

choose alternative j, and that is equal to 0 otherwise, with the natural constraint that
∑
j∈Ni xi,j = 1 (only one

alternative is chosen). The Maximum Social Welfare problem (7) can be written as




max{xi,j}i,j
∑
i∈I
∑
j∈Ni bi,jxi,j

s.t.
∑
i∈I
∑
j∈Ni wi,jxi,j ≤ Q∑

j∈Ni xi,j = 1, i ∈ I
xi,j ∈ {0, 1}, i ∈ I, j ∈ Ni
wi,j = Vi,j∗i (0) − Vi,j , i ∈ I, j ∈ Ni

, (9)

which is a Multiple-Choice Knapsack Problem (MCKP) with weights wi,j and profits bi,j (Kellerer et al., 2004,

chap. 11).210

Observe that the solution {xi,j}i,j of problem (9) corresponds to the personalized-incentive policy y, solution

of (7), where

yi,j = xi,j · wi,j , ∀i, j.

For any budget Q, we indicate with B∗(Q) the maximum of the social welfare, solution of problem (9).

3.4. Maximum Social Welfare Curve Problem

Suppose now that the regulator is endowed with a maximum budget Q and that he can spend any budget in

the interval Y ∈ [0, Q]. To decide the exact amount of budget that is convenient to spend, it is useful to obtain

the Maximum Social Welfare Curve C∗Q, representing the maximum social welfare reachable, B∗(Y ), for any budget

Y ∈ [0, Q], i.e.

C∗Q =
{(
Y,B∗(Y )

) ∣∣ Y ∈ [0, Q]
}
. (10)
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The Maximum Social Welfare Curve Problem consists in finding the curve C∗Q, for a given maximum budget Q. It is

easy to show that it is monotone non-decreasing (the larger the budget spent, the larger the social welfare reached).

Observe that, although a maximum budget Q is available, the regulator may not want to indiscriminately spend it215

all, but may choose the actual budget to invest in incentives, based on several criteria. For instance, the regulator

may use the above curve to find the minimum budget needed to reach a certain social-welfare target. Moreover,

in many practical cases, the social welfare is converted into money metric. The coefficient of conversion is usually

fixed based on political considerations. For instance, in our numerical results (Section 7), we convert CO2 emission

reduction into money, using the cost of 100 euros per ton of CO2. After converting social welfare in money metric,220

the regulator may choose to invest an incentive budget such that the gain of social welfare equals the incentive

spent. Such a value can be found on the Maximum Social Welfare Curve.

4. Approximation Algorithm

Kellerer et al. (2004) shows that the MCKP problem, and thus the Maximum Social Welfare problem (9), is

NP-hard. Therefore, for large instances of such problems, finding the optimal solution is unfeasible and we need to225

resort to heuristics. We provide in this section a polynomial time algorithm based on greedy algorithms from the

Operations Research literature, which gives us solutions boundedly close to the optimum. We then discuss some

relevant properties of such an algorithm, e.g., its diminishing returns behavior and the fact that it is an anytime

algorithm.

In the following subsection, we introduce some preliminary mathematical concepts.230

4.1. Preliminary Steps

Before presenting the proposed algorithm, we need to “clean” the input of the problem, removing some irrelevant

alternatives from the set Ni of the alternatives of any individual i. In broad terms, irrelevant alternatives are the

ones that do not provide enough social indicator compared to the incentive amount needed to induce them. We

call LP-extremes the alternatives remaining after the cleaning, and we denote them with Ri ⊆ Ni. The name235

LP-extremes is borrowed from Kellerer et al. (2004, Section 11.2.1).

The process of constructing the set Ri is called concavization and is described in detail in Appendix A. Here

we just give the reader an intuition of it via Figure 1, which represent the incentive amount and social indicator for

a set of alternatives Ni, of an individual i. In the figure, alternative 3 is irrelevant since 2 provides a larger social

indicator, while requiring less incentive. Alternative 7 is irrelevant since it requires to spend more incentive than240

6, for a negligible gain in the social indicator. It is much more convenient to make a slightly bigger investment to

induce alternative 9, which provides a significant social indicator improvement with respect to 6. More formally,

we say that 7 is LP-dominated by 6 and 9 (see Appendix A for more details).

We follow the Operations Research literature in the slight abuse of notation of denoting with wi,j the incentive

to be provided to the j-th alternative in Ri, where this is not ambiguous. With no loss of generality, we can assume

the ordering

wi,1 < wi,2 < · · · < wi,ri (11)
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Figure 1: Alternative set Ni of individual i and the subset Ri of LP-extremes.

in the set Ri, where ri is its cardinality. The default alternative of any individual is neither dominated nor LP-

dominated, since it requires no incentive (wi,j∗i (0) = 0). Therefore, the default alternative is the first alternative in245

the set Ri and wi,1 = 0.

Definition 4.1.1 (Efficiency and incremental efficiency). We define the efficiency of an alternative j of in-

dividual i as

ei,j ≡
bi,j − bi,j∗i (0)

wi,j
,

i.e., the gain in social indicator that we can gain via a unit of incentive allocated to that alternative. We define the

incremental social indicator b̃i,j and the incremental incentive w̃i,j required for each alternative j ∈ Ri as

b̃i,j ≡ bi,j − bi,j−1
w̃i,j ≡ wi,j − wi,j−1

, j = 2, . . . , ri. (12)

The incremental efficiency is then defined as

ẽi,j ≡ b̃i,j/w̃i,j . (13)

The incremental efficiency ẽi,j can be interpreted as the increase in social welfare for each monetary unit spent,

when individual i shifts from alternative j − 1 to alternative j.

4.2. Greedy Algorithm

We want to find a curve CQ = {(Y,B(Y )) | Y ∈ [0, Q]} that approximates the Maximum Social Welfare Curve250

C∗Q (10), i.e., such that B(Y ) is close to B∗(Y ) for any value of budget Y ≥ 0.

Very efficient algorithms, like the Dyer-Zemel algorithm (Kellerer et al., 2004, Section 11.2.1) are known to solve

problem (9), i.e., to approximate the maximum social welfare for a fixed single value of budget Q. However, to

apply them to the Maximum Social Welfare Curve problem, in which we want to find the maximum social welfare

for a range of budget values Y ∈ [0, Q], instead of just one, we would have to run those algorithms from scratch255

for every single value of budget. For this reason, we build our solutions upon a simpler greedy algorithm (Kellerer

et al., 2004, Figure 11.2), which is less efficient to solve the Maximum Social Welfare problem (although still

polynomial in time complexity), but easily extendable to also solve the Maximum Social Welfare Curve problem.

The other advantage deriving from such choice is that this greedy algorithm has interesting properties that increase

its practical application and economic interpretability, as discussed in Section 4.3.260
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The pseudocode of the algorithm is in Algorithm 1. The notation [i, j] stands for “j-th alternative of individual

i”. The idea of the algorithm is simple. First, the algorithm finds all the LP-extremes alternatives and sort them

by order of decreasing incremental efficiency. Then, at each iteration, the next pair of individual and alternative

[i′, j′] with the highest incremental efficiency is picked (line 8). The alternative induced to i′ is set to j′ (line 10)

and the budget is reduced by the amount of the incremental weight (equation (14)). An additional piece of the265

approximation of the social welfare curve is computed (equation (16)). The algorithm stops when the maximum

budget Q is depleted and it returns a policy y, which is such that any individual i, for whom the algorithm selected

an alternative j ∈ Ri, effectively chooses this alternative j.

Algorithm 1: Greedy algorithm for the Maximum Social Welfare and Maximum Social Welfare Curve

problems.
Input : Social indicators {bi,j}i,j , intrinsic utilities {Vi,j}i,j , budget Q

1 Iteration index k := 0

2 Y [k] := 0, Total incentive allocated so far.

3 B[k] := 0, Social welfare obtained in the current allocation.

4 Compute the ordered set Ri of LP-extremes of each individual i.

5 Sort all the alternatives [i, j] according to decreasing incremental efficiency ẽi,j and put them in a set R.

6 Initialize the alternatives chosen by the individuals {xi,j}i,j as follows xi,1 = 1, (default alternative)

xi,j = 0, for any alternative j > 1

7 while R 6= ∅ and Y [k] ≤ Q do

8 Take [i′, j′], the next alternative with the highest incremental efficiency ẽi′,j′ from R.

9 Add [i′, j′] to the solution, i.e.:

R := R \ {[i′, j′]},

Y [k+1] := Y [k] + w̃i′,j′ (14)

ẽ[k] := ẽi′,j′ (15)

B(Y ) := B[k], ∀Y ∈ [Y [k], Y [k+1]) (16)

B[k+1] := B[k] + b̃i′,j′

k := k + 1

10 Update the selected alternative for individual i′, i.e., xi′,j′ = 1,

xi′,j = 0, for any other alternative j 6= j′

11 end

Output: Curve CQ = {(Y,B(Y )) | Y ∈ [0, Q]}

Chosen alternatives {xi,j}i,j
Incentive policy y = {yi,j}i,j , where yi,j = xi,j · wi,j

Split item [s, t] := [i′, j′]

Incremental efficiency of the split item ẽs,t

Budget actually used Q̃ := Y [k−1]

Observe that the curve CQ given as output by the algorithm is an approximation of the solution C∗Q of the
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Maximum Social Welfare Curve Problem (Section 3.4). Moreover, given any maximum budget Q, the algorithm270

returns an approximation B(Q) to the solution B∗(Q) of the Maximum Social Welfare Problem (9). Note that, in

order to achieve B(Q), the policy issued by the algorithm does not spend the entire maximum budget Q, but only

Q̃ ≤ Q.

The algorithm also gives as output the incremental efficiency of the “split item”, denoted with ẽs,t, useful to

compute the optimality gap of the algorithm (Theorem 4.2.1 below). The name split item, which we borrow275

from Kellerer et al. (2004), reminds of the fact that, when we allocate the budget Q, we add to the solution all the

LP-extreme alternatives, in decreasing order of incremental efficiency, up to [s, t]. In other words, such alternative

[s, t] splits the set R of all the LP-extremes in two parts: the first part consists of the alternatives we include in

our solution, while we do not include the LP-extremes from the second part.

The distance to the optimum, in terms of social welfare, is bounded from above.280

Theorem 4.2.1 (Upper bound). Let us run Algorithm 1 with budget Q, and let Q̃ be the budget actually used and

ẽs,t be the incremental efficiency of the split item. The social welfare B(Q) we obtain is boundedly close to the social

welfare B∗(Q) of any optimal personalized-incentive policy (Definition 3.3.1). In particular,

B∗(Q)−B(Q) ≤ ẽs,t · (Q− Q̃). (17)

Corollary 4.2.2. The curve CQ obtained via Algorithm 1 is boundedly close to the Maximum Social Welfare Curve

C∗Q from equation (10) and the gap is given by Theorem 4.2.1.

The next corollary says that, for any budget Q, the curve CQ returned by Algorithm 1 and the Maximum Social

Welfare Curve C∗Q “touch each other”. This ensures that the allocation computed by Algorithm 1 at every iteration

is optimal. It is a direct consequence of Theorem 4.2.1.285

Corollary 4.2.3. The curve CQ obtained via Algorithm 1 and the Maximum Social Welfare Curve C∗Q from equa-

tion (10) are such that B(Y [k]) = B∗(Y [k]) in all the values Y [k], k = 0, 1, . . .
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Figure 2: Distance between the social welfare curve CQ computed by Algorithm 1, the maximum social welfare curve C∗Q (Section 3.4)

and the upper bound of Theorem 4.2.1. The stars represent the incentive spent Y [k] and social welfare Y [k] = B∗(Y [k]) at each iteration

k = 1, . . . , 8 of the algorithm (line 9).
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Figure 2 illustrates this property. The continuous curve represents the Maximum Social Welfare Curve C∗Q and

the dashed curve represents the curve CQ obtained via Algorithm 1. These two curves are step-functions because

of the discreteness of the problem. From Corollary 4.2.3, the curve CQ intersects the curve C∗Q at each iteration290

of the algorithm (represented by the stars). The dotted curve represents the upper bound of C∗Q, computed from

Theorem 4.2.1.

4.3. Useful Properties for Large-Scale Applications

Our aim is to compute a personalized-incentive policy in large scenarios in a small amount of time. It is therefore

crucial to show that our algorithm is computationally efficient.295

Proposition 4.3.1. The computational complexity of Algorithm 1 is O(
∑m
i=1 |Ni| · log |Ri|+ |R| · logm), where m

is the number of individuals, |Ni| is the number of alternatives of individual i, |Ri| is the number of LP-extremes

of individual i and |R| ≡∑m
i=1 |Ri|.

Note that, since the alternatives of each individual are independent of the others, the sets Ri can be computed

in parallel, thus reducing even further the computation time.300

Despite our algorithm being computationally efficient, there might be cases in which it is desirable to stop it pre-

maturely, without waiting for it to completely terminate. This can be the case when a personalized-incentive policy

must be computed on-the-fly, within tight time-constraints. The following properties ensure that our algorithm is

suitable to this situation, which eases its practical adoption.

Remark 4.3.2 (Anytime algorithm). Algorithm 1 is anytime: if we stop it prematurely at any iteration k, we305

get a valid solution for the Maximum Social Welfare and the Maximum Social Welfare Curve problems, with budget

Q′ = Y [k].

Remark 4.3.3 (Incremental use). Another desirable property of Algorithm 1 is that we can build on a previ-

ously computed incentive allocation whenever new available budget becomes available, instead of recomputing the

entire allocation from scratch. To explain this, let us suppose that we have a certain budget Q and the algorithm310

returns the allocation {xi,j}i,j , spending the corresponding incentive amount Q̃. Suppose now that the available

budget increases to Q′ > Q. In this case, in order to exploit the new additional budget, we can simply resume the

algorithm from its last iteration and continue up to the furthest iteration such that Y [k+1] ≤ Q′. This is, per-se,

a computational advantage with respect to algorithms that need to run from scratch every time new resources

(budget) are available.315

In order to describe the diminishing return property of Algorithm 1, we need the following definition.

Definition 4.3.4 (Incremental and overall efficiency). The incremental efficiency provided by the algorithm

at iteration k is ẽ[k], defined in equation (15). We define the overall efficiency of a personalized-incentive policy

spending budget Y and achieving social welfare B as e = B/Y . We denote with e[k] the overall efficiency of the

policy obtained by stopping Algorithm 1 at iteration k, i.e., e[k] = B[k]/Y [k].320

The following proposition illustrates that, by spending more and more budget and allocating it as the algorithm

dictates, we increase social welfare, but the marginal gain per unit of budget spent decreases.
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Proposition 4.3.5 (Diminishing returns). The incremental efficiency ẽ[k] and the overall efficiency ẽ[k] of the

alternative added by Algorithm 1 at every iteration k are both monotonically non-increasing.

The following corollary is a consequence of Proposition 4.3.5.325

Corollary 4.3.6. At any iteration k, we can compute an upper bound Bub ≥ B(Q) to the social welfare we would

get if we continue the algorithm until the end. Such an upper bound is Bub = B(Y [k]) + ẽ[k] · (Q− Y [k]).

Therefore, if we notice that B(Y [k]) is already sufficiently close to Bub, then it is not worth continuing the

algorithm, as we would not get much additional social welfare. In this case, we can safely stop the algorithm,

without waiting for it to end, thus saving time.330

In some cases, the regulator would be willing to maximize social welfare under the constraints that the overall

inverse efficiency e−1 is below a certain target. For instance, in Section 7.5 the regulator does not want to spent

more than 100 euros per ton of CO2 saved, which is considered to be the carbon price. In such cases, it is useful

to observe that, thanks to Proposition 4.3.5, (e[k])−1 is non-decreasing. Therefore, the regulator could run the

algorithm and stop at the iteration where (e[k])−1 goes above the target inverse efficiency.335

We close this section with a definition that will be useful in Section 5.

Definition 4.3.7 (Maximum Step Size and Characteristic Incremental Efficiency). Let us run Algorithm 1

with a certain budget Q and record the values Y [k] calculated therein, as well as the incremental efficiency of the

split item ẽs,t. The maximum step size is defined as γQ ≡ maxk=1,2,...(Y
[k]−Y [k−1]). The characteristic incremental

efficiency of budget Q is defined as ẽQ ≡ ẽs,t.340

The properties presented in this section have shown that the proposed Algorithm 1 is computationally efficient

and able to return an allocation providing a welfare close to the optimum. Moreover, it has some features that

make its adoption easier in practical large-scale scenarios.

5. Comparison with Other Policies

So far, we have considered that the regulator uses personalized incentives to increase social welfare. In particular,345

the policy proposed is such that the loss in individual utility, due to the shift to another alternative, is compensated

exactly by the incentive. In this section, to frame our proposed personalized-incentive policy into a more general set

of feasible policies, we generalize the formulation to include not only personalized incentives, but also enforcement

policies, taxation, and non-personalized-incentive policies. In Section 5.1, we show that any optimal personalized-

incentive policy (Definition 3.3.1) is optimal in this more general class of policies. In Section 5.2, we show that350

Algorithm 1 can be used to compute an enforcement policy and a proportional tax-subsidy policy, which are both

boundedly close to the optimal general policy. We finally analytically show that non-personalized-incentive policies,

like Tripod (Araldo et al., 2019), achieve by construction less social welfare than our personalized-incentive policy,

and we provide a lower bound to this social welfare gap.
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5.1. Optimality of Personalized-Incentives Policies among General Policies355

We now consider a more general space of policies, including incentives, enforcement and taxation policies, and

we define a criteria of optimality in this space. In order to do so, we need to define some new quantities.

The total loss in individual utility, of a policy z, is

∆U(z) ≡
m∑

i=1

(
Vi,j∗i (0) − Ui,j∗i (z)(z)

)
. (18)

With a taxation policy, i.e., a policy z such that zi,j ≤ 0, ∀i, j, the loss in individual utility is non-negative, i.e.,

∆U(z) ≥ 0. With an incentive policy, i.e., a policy z such that zi,j ≥ 0, ∀i, j, the loss in individual utility is

non-positive, i.e., ∆U(z) ≤ 0. In particular, in any personalized-incentive policy obeying to Proposition 3.2.1, the360

individuals are perfectly compensated for their loss in utility, and thus ∆U(z) = 0, in accordance with Remark 3.2.3.

Keeping everything else fixed, it is obvious that, the smaller ∆U , the better.

The disutility, or cost, of a policy is measured by combining the loss in individual utilities and the expenses for

the regulator, defined in equation (3).

Definition 5.1.1 (Disutility). The disutility δ(z) of a policy z is defined as the expenses of the regulator Y (z)

plus the total loss in individual utilities ∆U(z), i.e.,

δ(z) ≡ Y (z) + ∆U(z). (19)

The following proposition shows that the disutility of a policy is always non-negative, which means that it is365

not possible that both the individuals increase their utility and the regulator collects revenues. It also shows that,

if two policies imply the same alternatives chosen, then they have the same disutility.

Proposition 5.1.2. Every policy z has a non-negative disutility that only depends on the alternative chosen by the

individuals, rather than the actual incentive or taxation proposed. In particular:

δ(z) =

m∑

i=1

(
Vi,j∗i (0) − Vi,j∗i (z)

)
≥ 0

We can now define an optimal general policy, whose definition includes incentive, taxation and enforcement

policies.

Definition 5.1.3 (Optimal General Policy). An optimal general policy z with disutility threshold Q ≥ 0 is the

solution of the following problem: 



max
z

B(z)

s.t. δ(z) ≤ Q
. (20)

Note that, problem (20) is a generalization of (7). Indeed, we obtain the latter from the former by (i) constraining370

the policy to be a personalized-incentive policy, i.e., zi,j ≥ 0,∀i ∈ I, j ∈ Ni and (ii) imposing no change in individual

utility, i.e., ∆U(z) = 0.

The two next propositions characterize the optimal general policy. The first one implies that finding an optimal

general policy is equivalent to finding a chosen-alternative set which maximizes social welfare, subject to a disutility

constraint.375
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Proposition 5.1.4. Let z be an optimal general policy with disutility threshold Q. Any other policy z′ inducing the

same alternatives is also an optimal general policy, independent of the actual value of the single incentives or taxes

proposed.

The following proposition shows that the personalized-incentive policy, considered previously, is still relevant in

this more general framework. The proposition states that, for any disutility threshold Q, it is possible to find an380

optimal policy which is a personalized-incentive policy.

Proposition 5.1.5. For any Q ≥ 0, any optimal personalized-incentive policy y with budget Q (Definition 3.3.1)

is also an optimal general policy with disutility threshold Q (Definition 5.1.3).

The following corollary states that the social welfare bound for personalized-incentive policies (Theorem 4.2.1)

is equivalent for general policies.385

Corollary 5.1.6. Let us run Algorithm 1 with budget Q to construct a personalized-incentive policy. The social

welfare B(Q) we obtain is boundedly close to the optimum B∗(Q), obtainable with an optimal general policy with

disutiliy threshold Q. In particular,

B∗(Q)−B(Q) ≤ ẽs,t · (Q− Q̃).

5.2. Computing Optimal Enforcement and Proportional Tax-Subsidy Policy

In this section, we show how Algorithm 1 can be used, in conjunction with Propositions 5.1.5 and 5.1.6, to

compute an enforcement policy and a proportional tax-subsidy policy boundedly close to the optimum.

We provide a numerical comparison between these policies in Section 7.6.

5.2.1. Enforcement Policy390

With enforcement policies, the regulator constrains the individuals to choose an alternative among a subset of

their choice set. In the most extreme case, the individuals can choose only one alternative.

Let y be the personalized-incentive policy returned by Algorithm 1, for a budget Q. Consider now a policy z

enforcing the individual to choose the same alternative that they would choose under the policy y, i.e.,




zi,j = 0, if j = j∗i (y)

zi,j = −∞, otherwise
, ∀i, j.

Proposition 5.2.1. The enforcement policy z constructed above is boundedly close to an optimal general policy

with disutility constraint Q. The bound is the same as Corollary 5.1.6.

5.2.2. Proportional Tax-Subsidy Policy395

We consider here policies z for which the monetary transfers are proportional to the social indicator of the

alternatives, that is

zi,j = τ · (bi,j −Ai), ∀i, j, (21)

where τ > 0 is the tax-subsidy level and Ai ∈ R is an individual-specific baseline social-indicator, set by the regulator.

We call these policies proportional tax-subsidy policies. Observe that, for any individual i, her alternatives j ∈ Ni
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such that the social indicator is below the baseline are taxed (i.e., bi,j < Ai ⇒ zi,j < 0). Conversely, alternatives

j ∈ Ni having social indicator above the baseline are subsidized (i.e., bi,j > Ai ⇒ zi,j > 0). The baseline social-

indicators Ai can vary from individual to individual. However, we impose that the tax-subsidy level τ is the same400

for everyone. In this sense, we consider that these policies are not personalized.

Observe from equations (1) and (21) that, considering any individual i, if we vary the baseline Ai the variation

of the utility Ui,j is the same for all alternatives j ∈ Ni. Hence, the value of Ai does not impact the choice of

i. It simply represents a monetary transfer between the individual and the regulator. More precisely, setting low

Ai favors transfers from the regulator to individuals, thus increasing individual utilities, to the detriment of the405

regulator. On the other hand, setting high Ai, favors the revenue of the regulator, to the detriment of the utility of

the individuals.

Note that, if bi,j represents a negative externality (as in Section 7), then the tax-subsidy policy defined above is

equivalent to a Pigouvian tax if τ is set to be equal to the external marginal cost of the externalities and Ai = 0.

For instance, it has been estimated (Quinet et al., 2009), that the social cost of 1 ton of CO2 is 100 euros. Then, if410

bi,j represents CO2 emissions (in tons), the Pigouvian tax would be a proportional tax-subsidy policy with τ = 100

euros.

The following theorem shows that we can use Algorithm 1 to compute a proportional tax-subsidy policy that is

boundedly close to the theoretical optimum.

Theorem 5.2.2. We can construct a proportional tax-subsidy z under a certain disutility threshold Q as follows.415

Run Algorithm 1 with budget constraint Q and let ẽs,t be the incremental efficiency of the split item given as output.

The proportional tax-subsidy policy z, defined as in equation (21), with tax-subsidy level

τ = 1/ẽs,t (22)

achieves a social welfare that is boundedly close to the optimal general policy with disutility threshold Q. The bound

is the same as Corollary 5.1.6.

5.2.3. Comparison with Proportional-Incentive Policy and Tripod

A proportional-incentive policy z is a proportional tax-subsidy policy, as in (21) where only subsidies and not

taxes are distributed, i.e.

Ai ≤ bi,j , ∀i ∈ I, j ∈ Ni. (23)

An example of proportional-incentive policy is Tripod (Araldo et al., 2019).420

In this section we show that proportional-incentive policies are inefficient incentive policies, in the sense that,

to achieve a certain social welfare level, they spend more incentives than needed. We call “inefficiency gap” this

additional incentive spent and we compute a lower bound for it in the following proposition.

Proposition 5.2.3. Consider a proportional-incentive policy z as before. There always exists a personalized-

incentive policy y that is able to achieve at least the same social welfare and provides the following savings in the

amount of incentive spent:

Y (z)− Y (y) ≥ 1

τ
·
∑

i∈I

(
Vi,j∗i (z) − Vi,j∗i (0)

)
·∆ei,j∗i (z) ≡ L(z)
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where ∆ei,j ≡ ei,j − 1/τ is defined as efficiency loss, ∀i ∈ I, j ∈ Ni. The quantity L(z) defined above is a lower

bound for the inefficiency gap.425

Note that the efficiency loss quantifies the fact that proportional-incentive policies are not able to exploit

the inherent efficiency ei,j (see Definition 4.1.1) of the incentivized alternative. Indeed, instead of using such a

alternative-dependent efficiency, they use a single value 1/τ .

We compute in the following proposition a lower bound on the suboptimality gap of proportional-incentive

policies.430

Proposition 5.2.4. Let us consider a proportional-incentive policy z, achieving a social welfare B(z) and spending

an incentive amount Y (z). Let us denote with B∗(Y (z)) the maximum social welfare achievable by an optimal

personalized-incentive policy with that incentive amount. The following lower bound holds on the suboptimality gap:

B∗(Y (z))−B(z) ≥ max
{

0, ẽY (z) ·
(
L(z)− 2γY (z)

)}

where γY (z) and ẽY (z) are the maximum step size and the characteristic incremental efficiency, as defined in Defi-

nition 4.3.7.

We now draw an interesting parallel with Tripod, an incentive policy described in Araldo et al. (2019). With

the Tripod policy, that we denote zTr, the incentives proposed to individuals are proportional to the gain in the

social indicator with respect to the default alternative, i.e.

zTr
i,j = (bi,j − bi,j∗i (0))/TEE

where the constant TEE is called Token Energy Efficiency and is fixed by the regulator. In Tripod, the incentives are

distributed to individuals under a First-Come First-Served discipline, until a certain budget is depleted. Therefore,

out of the entire population I of individuals only a subset ITr actually receive an incentive. In Araldo et al. (2019),435

the value of TEE is fixed empirically, with a grid search, trying several values of TEE in simulation and choosing

the one with maximum social welfare.

Within our framework, Tripod can be defined as a proportional-incentive policy, with τ = 1/TEE and Ai =

bi,j∗i (0), applied to population ITr.

As a consequence of Proposition 5.2.3, Tripod is an inefficient incentive policy and we can lower-bound the440

additional incentive spent with respect to the theoretical best incentive policy.

Corollary 5.2.5. For any Tripod incentive policy zTr, there always exists a personalized-incentive policy z that is

able to achieve at least the same social welfare of by spending less incentives. The saving in the incentives is:

Y (zTr)− Y (z) ≥ TEE ·
∑

i∈ITr

(
Vi,j∗i (zTr) − Vi,j∗i (0)

)
·∆ei,j∗i (zTr)

where ∆ei,j ≡ ei,j − TEE is defined as efficiency loss, ∀i ∈ I, j ∈ Ni and ITr is the set of individuals getting

incentives in Tripod.

The previous proposition shows that Tripod is far from minimizing the incentives needed to obtain a certain

social welfare, while the policy issued by Algorithm 1 is generally close to using minimal incentives. This is confirmed445

by our numerical results in Section 7.6. An interpretation of the inefficiency suffered by Tripod follows.
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Remark 5.2.6. Tripod uses a single value TEE = 1/τ to compute incentives for all alternatives j of all users i

and gets 1/TEE additional units of social welfare per additional unit of incentive spent. The only incentivized

alternatives are the ones for which ei,j ≥ TEE (otherwise the proposed incentive would not be accepted by the

individual). In other words, Tripod gets always an efficiency (unit of social welfare improvement over unit of incentive450

spend) that is lower than the intrinsic efficiency of the incentivized alternatives. By contrast, our personalized policy

always entirely exploits the intrinsic efficiency of the incentivized alternatives.

Since Tripod is a proportional-incentive policy, the same lower bound on the suboptimality gap as in Proposi-

tion 5.2.4 also holds, which we do not write for the sake of space.

6. Imperfect Information455

The assumption that the regulator knows perfectly the utility of the individuals may seem restrictive. In this

section, we show that the algorithm is still relevant when the utility is imperfectly known. From discrete-choice

theory (Anderson et al., 1992), we assume that intrinsic utility of alternative j of individual i is composed of a

deterministic part V̂i,j and a random part εi,j :

Vi,j = V̂i,j + εi,j .

We assume that the regulator knows the deterministic part V̂i,j of the utility but not the random part εi,j .

Under this assumption, the regulator cannot compute the minimum incentive amount needed to induce individual

i to shift from her default alternative j∗i (0) to another alternative j, using directly equation (6). A heuristic solution

would be to set the incentive amount equal to the expectation of the utility difference between the two alternatives,

given that j∗i (0) is the default alternative chosen when there is no incentive. In this case, the incentives {yi,j}j∈Ni
proposed by the regulator to individual i, to convince her to shift to alternative j, are such that yi,j′ = 0, for any

j′ 6= j, and

yi,j = E(Vi,j∗i (0) − Vi,j |Vi,j∗i (0) > Vi,j) = ŷi,j + E(εi,j∗i (0) − εi,j |εi,j∗i (0) − εi,j > −ŷi,j), (24)

where ŷi,j = V̂i,j∗i (0) − V̂i,j is the difference in the deterministic part of the utility, known to the regulator.

Given an individual i and an alternative j ∈ Ni, if the regulator proposes the incentive yi,j , as defined by

equation (24), then individual i has a positive probability to refuse the incentive. Hence, the expenses of the

regulator may be smaller than the total incentive amount proposed.460

Algorithm 1 can be used to compute a personalized-incentive policy under imperfect information, by defining

new weights

wi,j = E(Vi,j∗i (0) − Vi,j |Vi,j∗i (0) > Vi,j).

At each iteration of the algorithm, the regulator proposes the incentive wi′,j′ to individual i′ for alternative j′,

where [i′, j′] is the pair of individual and alternative selected by the algorithm. The regulator observes the response

of the individual to the incentive. If the individual accepts the incentive, it decreases the budget by the incentive

amount. The regulator keeps proposing incentives one by one until his budget is depleted.
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Note that, if an individual i accepts an incentive yi,j for alternative j ∈ Ni, the regulator can still propose her,465

later, an incentive yi,j′ for another alternative j′ ∈ Ni. If the individual refuses the second incentive yi,j′ , she still

receives the first incentive yi,j .

In Section 7.7, we apply the policy presented above to our case study and compare it to the case with per-

fect information, assuming that random terms are Gumbel-distributed. The following proposition gives the exact

expression of the incentives (24), in case of Gumbel-distributed random terms.470

Proposition 6.0.1. Let us assume that the random terms are i.i.d. and follow a Gumbel distribution with scale

parameter µ (i.e., εi,j/µ follows a standard Gumbel distribution). Then, the incentive amount from equation (24)

can be written as

yi,j = µ
1 + eŷi,j/µ

eŷi,j/µ
ln
(

1 + eŷi,j/µ
)
≥ 0.

7. Numerical Results in an Application to Mode Choice

In this section, we simulate an application of our personalized incentive policy to a scenario related to mode choice

of individuals commuting to their workplace. We consider a regulator willing to employ a limited monetary budget

in order to promote eco-friendly modes of transportation. The goal of the regulator is to reduce CO2 emissions. We

compute the reduction in CO2 emissions achieved via the personalized-incentive policy of Algorithm 1 and compare475

it with enforcement, proportional taxation and non-personalized-incentive policies.

Our approach is as follows. After describing the census data used to build the simulation scenario (Section 7.1),

we estimate a multinomial logit model for mode choice (Section 7.2). Then, using the previous estimates, we simulate

the utility of a home-work trip for a group of individuals, for all the modes of transportation considered (Section 7.3).

We then approximate the CO2 emissions for these same trips (Section 7.4) and approximate the optimal personalized-480

incentive policy using Algorithm 1 (Section 7.5). We then study the modal shifts induced by such policy and the

gain in CO2 emissions achieved. We conclude the numerical results by comparing our personalized incentive policy

with other policies (enforcement, taxation, flat incentives – Section 7.6) and by evaluating its performance in case

of imperfect information (Section 7.7).

7.1. Data485

We use census data from the French statistics institute INSEE, regarding households surveyed between 2015

and 2019. We restrict the dataset to households whose home and workplace are in the Rhône department, which

include Lyon and its suburbs (about 222 000 households in total). Observed variables include city- or district-level

home and work location, main mode of transportation used for commuting, and some socio-demographic variables.

The modes of transportation are divided in five categories: car, public transit, walking, cycling and motorcycle.490

Appendix C provides a detailed description of the data.

7.2. Multinomial Logit Model

Using the census data, we estimate a multinomial logit model for the mode choice of the individuals. We consider

five exogenous variables specific to the individual (age, sex, number of cars owned per employees in the household
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and professional occupation) and one exogenous variable which is specific to both the mode of transportation and495

the individual (travel time). The number of cars owned is supposed to only impact the utility of commuting by

car. Following Inoa et al. (2015), we also include interaction variables between travel time and socio-demographic

variables. Details on how travel time is computed are provided on Appendix D. To estimate the utility of the round

trip to work, travel times are doubled (we assume that the modes of transportation for the trip back and forth are

the same).500

Note that public transit is excluded from the choice set of the individuals whose commute to work cannot be

performed by public transit ('16 000 individuals, see Appendix D for more details).

The four other modes of transportation (car, walking, cycling and motorcycle) are assumed to be in the choice

set of all the individuals. This is a strong assumption. A regulator willing to deploy the personalized-incentive

policy in practice could improve the precision of the model by using individual-specific data for vehicle ownership505

in order to remove some modes of transportation from the choice set of an individual, if she does not own the

corresponding vehicle.

Table 2 provides the results of the multinomial logit model, estimated with the R package mlogit. The most

frequent categories are used as reference category (car for the mode of transportation, man for the sex and employee

for the occupation).510

The results are consistent with the literature on commute mode choice. For example, we find that being young

and male increases the probability to commute by cycling, consistently with the literature review of cycling mode

choice from Muñoz et al. (2016). We also find that the coefficient of travel time is larger for public transit than for

car which suggests that the value of time for commutes by public transit is slightly smaller than for commutes by

car. This is coherent with the meta-analysis on the value of travel-time in France from Wardman et al. (2012).515

7.3. Simulating Utilities

We consider a regulator whose goal is to reduce the CO2 emissions due to commute trips, by distributing

incentives to the population described in the data (about 222 000 individuals).

To apply Algorithm 1, the regulator needs to know the utility and the CO2 emissions of each individual, for

each mode of transportation. We describe in this subsection how we estimate them. Note that our estimations are520

individual specific.

Remark 7.3.1. Recall that Assumption 3.1.2 implies that the utility of an individual when commuting by car

or public transit does not depend on how many other individuals commute by car or by public transit. Such an

assumption is reasonable when the congestion on the road and transit occupation rate are approximately exogenous,

i.e., they do not depend on the incentive policy. This approximation is legitimate if the number of modal shifts525

induced by the policy is low, so that their impact on congestion and occupation is negligible. A posteriori, we

check that this latter assumption is verified in our case, since less than 1.60% of individuals shifted mode due to

the personalized-incentive policy.

Following the multinomial logit theory, we assume that utility of alternative j of individual i is composed of a

23



Table 2: Multinomial logit model of mode choice

(1) (2) (3) (4) (5)
car public_transit walking cycling motorcycle

constant 2.7709*** 2.8659*** 1.1340*** -0.7284***
(0.0395) (0.0488) (0.0509) (0.0773)

age -0.0150*** -0.0026*** -0.0139*** -0.0019
(0.0008) (0.0009) (0.0010) (0.0015)

woman 0.5349*** 0.4361*** -0.3882*** -1.6909***
(0.0194) (0.0248) (0.0242) (0.0527)

car_per_indiv 1.2138***
(0.0161)

car_per_indiv>0 1.5604***
(0.0245)

occupation: farmer -3.9054*** -1.0434*** -2.3653*** -0.8798**
(0.4140) (0.2012) (0.5073) (0.4400)

occupation: artisan -1.7023*** -1.2153*** -0.7848*** -0.2261***
(0.0525) (0.0566) (0.0651) (0.0841)

occupation: executive 0.1522*** 0.2031*** 1.1710*** 0.2986***
(0.0255) (0.0327) (0.0337) (0.0575)

occupation: intermediate -0.2283*** -0.1447*** 0.4259*** -0.0060
(0.0242) (0.0311) (0.0349) (0.0584)

occupation: blue-collar -0.7579*** -0.9691*** -0.4808*** -0.0259
(0.0318) (0.0413) (0.0467) (0.0616)

travel_time -1.6281*** -1.1746*** -2.1032*** -2.8474*** -3.2075***
(0.0530) (0.0480) (0.0492) (0.0581) (0.0968)

travel_time × age -0.0026**
(0.0010)

travel_time × woman -0.1134***
(0.0266)

travel_time × occupation: farmer 1.1027***
(0.3621)

travel_time × occupation: artisan -0.0763
(0.0918)

travel_time × occupation: executive -0.3671***
(0.0354)

travel_time × occupation: intermediate -0.1986***
(0.0330)

travel_time × occupation: blue-collar 0.2623***
(0.0403)

Reference category is male employee
Travel time is expressed in hours

Standard errors are reported in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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deterministic part V̂i,j and a random part εi,j :

Vi,j = V̂i,j + εi,j . (25)

The deterministic part of the utility can be computed using the estimates from Table 2. As for the random part, we

simulate random draws from a random variable with standard Gumbel distribution (see Appendix E). In accordance530

with Assumption 3.1.4, the regulator is assumed to know perfectly both the estimates and the draws and thus the

utilities. We relax this assumption in Section 7.7, where we provide results where the random draws are unknown

to the regulator.

To normalize the utility in monetary units, we compare the value of travel time by car from our regression

(expressed in utility units) with the value of travel time by car in France from the literature (expressed in euros).535

We compute the value of travel time by taking the opposite of the average marginal effect on utility of increasing

the travel time of the individuals by one hour.4 We find an average value of time of 1.88 utility units per hour.

Previous studies (Wardman et al., 2012) have shown that the value of travel time, for car commuters, in

France, is about 9.17 euros per hour. This would imply that, in our estimates, one utility unit corresponds to

µ = 9.17/1.88 = 4.88 euros. In the following, we assume that the utility is normalized in monetary units, i.e., the540

values in equation (25) are multiplied by µ. Note that it implies that the random variables εi,j follows a Gumbel

distribution with scale parameter µ.

7.4. Computing the Social Indicator

The regulator wants to reduce greenhouse gas emissions. The social indicator associated to the mode of trans-

portation j of individual i is the reduction in CO2 equivalent of greenhouse gas emissions generated during the trip545

of i performed with mode j, with respect to the emissions of the default mode. To compute CO2 emissions for

each individual and each mode of transportation, we take the distance of the fastest path between the individual’s

home and workplace and we multiply this distance with the CO2 emissions equivalent per kilometer for the mode

of transportation, using open-sourced data from the French agency ADEME (Agence de l’Environnement et de la

Maîtrise de l’Énergie).5550

For car, we use the CO2 emissions of a passenger car with average motorization (0.193 kilogram of CO2 per

kilometer). That is, we assume that the CO2 emissions per kilometer are the same for everyone. We pinpoint that

this assumption may lead to some imprecision in the calculation of the actual CO2 reduction. The application could

be improved by using detailed data on the characteristics of the vehicle used by each individual.

For Assumption 3.1.3 to be valid, CO2 emissions due to the commuting trip of an individual must be independent555

from the mode of transportation chosen by the other commuters. For the same argument of Remark 7.3.1, we can

claim that this approximately holds true in the scenario.

4For example, referring to the coefficients of Table 2, for a 40-year old male employee, the value of travel time by car is

−
(

−1.6281︸ ︷︷ ︸
coef. of travel_time (car)

+ −0.0026︸ ︷︷ ︸
coef. of travel_time×age

· 40︸︷︷︸
age

)
= 1.7321 utility units/hour.

5https://www.bilans-ges.ademe.fr/en/
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Table 3: Our calculations of CO2 emissions in the Rhône department.

Daily CO2 emissions (all home-work and work-home trips) 595.26 tons of CO2

Total CO2 emissions in one year (200 working days) 119 050 tons of CO2

Average yearly individual CO2 emissions 0.54 tons of CO2

As Chester et al. (2010), we adopt a disaggregated view of CO2 emissions from public transit. We consider that

the overall CO2 generated by transit vehicles is shared among all travelers making trips within transit, proportionally

to the kilometers traveled. In other words, each trip on transit produces a quantity of CO2 emissions equal to the560

number of kilometers traveled multiplied by the average CO2 emissions per kilometer per passenger, assuming

average and constant occupancy rate. Observe that it is reasonable to assume an average occupancy rate that is

constant over time from the argument of Remark 7.3.1. The average CO2 emissions per kilometer per passenger

vary according to the mode of transportation used (e.g., bus, tramway or metro). The mode of transportation

taken for the fastest path are used to compute CO2 emissions. For multi-modal public-transit trips (e.g., bus then565

tramway), the CO2 emissions are computed according to the distance traveled by each mode of transportation.

CO2 emissions for walking and cycling trips are set to zero. Hence, for each individual, the two alternatives

corresponding to walking and cycling differ only in the intrinsic utility. As a consequence, the alternative with

smaller intrinsic utility can be neglected, thanks to Proposition 3.2.4.

Recall that Assumption 3.1.4 implies that the regulator knows perfectly the CO2 emissions of the trips. This570

is more realistic than for utility. In any case, measurement errors for CO2 emissions are not as worrying as

measurement errors for utility as we can assume that, if such errors are unbiased, they cancel out. We will observe

in Section 7.7 that the errors are much more severe when utilities are imperfectly known, as some individuals might

reject the incentives, which leads to a suboptimal allocation.

Under the previous assumptions, we calculate the CO2 emissions reported in Table 3, which results in 0.54 ton575

of CO2 yearly per individual in the Rhône department. This number is close to the publicly known estimation for

the entire France: in 2007, the average French worker emitted 0.64 ton per year because of his/her home-work trips

(Levy and Le Jeannic, 2011).

7.5. Calculation of the Personalized-Incentive Policy

We consider a large-scale scenario with more than 200 thousands individuals and over 1 million alternatives580

(Appendix C). We consider a policy in which the regulator proposes, each day, incentives to the individuals before

their home-work trip. The incentives are given conditional on the mode of transportation chosen for the round trip

to work, thus the social indicator of an alternative is the reduction in CO2 emissions for the trip back and forth, with

respect to the default alternative. The budget represents the daily amount available to the regulator for incentives.

First, we run Algorithm 1 with a daily budget of 3000 euros and we plot the maximum social welfare curve585

(see Figure 3). The maximum social welfare curve is an increasing step function (steps are small and thus not

visible). Consistently with Proposition 4.3.5, the slope of each step is non-increasing, which gives the curve a

concave curvature.
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Figure 3: Maximum social welfare curve, up to a daily budget of 3000 euros. Note: The social welfare corresponds to the reduction in

CO2 emissions due to the personalized-incentive policy.

Quinet et al. (2009) predict that the carbon price in France would be of 100 euros per ton of CO2 in 2030. It

is thus reasonable to assume the regulator is interested in finding an incentive policy such that, for every 100 euros590

spent in incentives, pollution is reduced of at least a ton of CO2. To this aim, the regulator can observe the curves

of Figure 4, which plots the inverse of the incremental and overall efficiency (the ẽ[k] and e[k] of Definition 4.3.4),

with respect to the budget Y [k] allocated by the algorithm at each iteration k. Thanks to Proposition 4.3.5, 1/e[k]

and 1/ẽ[k] increase with Y [k], as we proceed with the iterations of the algorithm. Thanks to this monotonicity, the

regulator can apply one of the following two criteria to fix the budget to invest. It could run Algorithm 4 and stop595

it when 1/e[k] equals 100 euros per ton of CO2. Alternatively, it can stop the Algorithm when 1/ẽ[k] equals 100

euros per ton of CO2. From Figure 4, we observe that with the first criterion the regulator would need to invest

about 1800 euros per day, and about 500 euros with the second criterion. In our opinion, both criteria would make

sense, and the preference over one of them is a political choice.

We now set the budget of the regulator to Q = 1800 euros. Running Algorithm 1 with this budget required600

about 3500 iterations and took about 6 seconds (with Python, on a computer with an Intel i5-8350U 1.7GHz and

24GB of memory). The algorithm allocates practically all the budget (1798.59 euros). We find that 1.57% of

individuals received incentives and changed transportation mode, which results in a reduction of CO2 emission by

18 tons of CO2 per day (3.00 % of total CO2 emissions). Thus, this policy would cost on average 100.61 euros for

each ton of CO2 prevented.605

Despite the small incentives, the reduction in CO2 emissions is considerable. Indeed, among the individuals who

received incentives, the average amount of incentives is 0.52 euros per individual, for an average daily reduction in

CO2 emissions of 5 kilograms. Recall that alternatives providing a large reduction in CO2, while requiring small

incentive, have a high efficiency. Hence, the algorithm selects first shifts achievable with a small incentive, i.e., where

the individual is almost indifferent between the two alternatives, which however have a large difference in CO2.610
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Figure 4: Cost of the policy in euros per ton of CO2 prevented as a function of the daily budget.

Figure 5 shows the distribution of the incentive amount and the CO2 reduction for the incentivized individuals.

For most incentives, the amount proposed to individuals is below 1 euro (incentives with a larger amount are not

efficient enough, unless the CO2 reduction is very high).

Figure 6 compares mode share before and after the policy. Most individuals who received incentives are in-

dividuals who commuted by car and were induced to commute by public transit (1.2% of all individuals, 74% of615

individuals who received incentives). The share of individuals commuting by car decreased by 2.4%, while public

transit ridership increased by 4%.

We now compute a bound of the optimality gap, i.e., the maximum additional CO2 savings we would achieve if

we could use a theoretical optimal policy instead of resorting to Algorithm 1. To do so, we apply Theorem 4.2.1.

Since the incremental efficiency of the split item returned by the algorithm is ẽs,t ' 5 kilograms of CO2 per euro620

and the unused budget is Q − Q̃ = 1.41 euros, an optimal policy would reduce of just 5 · 1.41 ' 7 kilograms more

than Algorithm 1, which is negligible compared to the total CO2 emissions reduction of 18 tons provided overall.

7.6. Comparison with Other Policies

In Section 7.5, we evaluated the performance of the personalized incentive policy calculated by Algorithm 1,

which we denote with y. We now compare it with three other policies from Section 5.2: an enforcement policy, a625

proportional taxation system and the Tripod incentive system from Araldo et al. (2019).

Aggregate results for these policies are provided in Table 4. The policies are defined so that they induce the

same choices for the individuals, using results from Section 3. Therefore, they provide the same reduction in CO2

emissions and, from Proposition 5.1.2, they have the same disutility. However, they differ in their cost for the

regulator and the variation in individual utilities implied. It should be noted that the best policy to implement630

depends on social, political or juridical constraints.
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Figure 5: Distribution of incentive amount and CO2 reduction for the incentives given in one day with budget Q = 1800 euros.

The slope of the black line represents the incremental efficiency of the split item returned by the algorithm, ẽs,t = 5 tons of CO2 / euro.

Note that all points are above the line because their incremental efficiency is larger. The histogram above represents the distribution of

the incentive amounts. The histogram on the right represents the distribution of the CO2 reduction for the incentives.
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Figure 6: Evolution of mode share before and after the policy. 1.163% of individuals were given incentives to shift from car to public

transit, 27.29% of individuals commuted by public transit before the policy and were not induced to shift.
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Table 4: Summary of policies.

Policy z Expenses (euros) Ind. utility (euros) Disutility (euros) CO2 reduction (tons)

Y (z) ∆U(z) δ(z) B(z)

Personalized incentives 1798.59 0 1798.59 17.878

Enforcement 0 −1798.59 1798.59 17.878

Proportional tax −116 167.48 −114 368.89 1798.59 17.878

Tripod incentives 3596.97 1798.38 1798.59 17.878

In these results, we fix the disutility threshold to 1798.59 euros, which corresponds to the incentive Q̃ actually

spent by Algorithm 1 when we set the budget to Q = 1800 euros. This means that if we run the algorithm setting

a budget of 1798.59 euros, it spends it all and, thanks to Corollary 5.1.6, the resulting policy is optimal under a

budget constraint of 1798.59 euros.635

Enforcement policy. Thanks to Proposition 5.2.1, the regulator can compute an enforcement policy z that is optimal

for a disutility threshold of 1798.59 euros, by simply “imitating” the personalized incentive policy y, i.e., by inducing

the same alternatives as y. In order to do so, the regulator bans all the other alternatives, i.e., any alternative j

such that j 6= j∗i (y) is banned. Obviously, it is not necessary to ban any alternative j if j∗i (y) is preferred to j, in

absence of policy, i.e., Vi,j < Vi,j∗i (y). Therefore, only the individuals receiving incentives under policy y suffer bans640

with z, which correspond to only 1.57% of the population.

Contrarily to the personalized-incentive policy, the enforcement policy does not cost any money to the regulator

(apart from eventual transaction costs) but it decreases individual utilities by 1798.59 euros. Moreover, the 1.57%

of individuals impacted by the ban may perceive that they are inequitably penalized with respect to the others.

Hence, the enforcement policy might be less accepted by the population. Still, this policy is well adapted to the645

context of imperfect information as it ensures that the individuals always choose the alternative wanted by the

regulator.

Proportional tax. The proportional tax policy is computed from equation (21), using the tax level given by equation

(22) (Theorem 5.2.2). For each individual i, the baseline social-indicators Ai is set to the CO2 emissions of the

default transportation mode, so that bi,j−Ai is equal to the opposite of the CO2 emissions of transportation mode j.650

Since the taxation provides revenues, the regulator is not constrained by his budget anymore. However, taxation

negatively impacts the utilities of the individuals, and is thus limited by political constraints, which we model by

imposing that the disutility of the policy must be below a threshold Q = 1798.59 euros.

The tax must be paid by all individuals commuting either by car, public transit or motorcycle (about 86 % of

individuals), even if the tax does not affect their choice. This is different from the personalized-incentive policy, for655

which only 1.57 % of individuals are impacted. This explains why the amount of taxes collected is about hundred

times larger than the amount of incentive needed to reach the same reduction in CO2 emissions (see Table 4). A

taxation policy is particularly penalizing for inelastic individuals who cannot shift to a more eco-friendly alternative,

e.g., because they are living far from their workplace, or in a place with no transit offer. Therefore, a taxation
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Table 5: Comparison of the performance of the personalized-incentive policy for one day, with perfect and imperfect information.

Perfect information (Sec. 7.5) Imperfect information

Budget spent 1798.59 euros 1797.03 euros

Incentives proposed 3486 419

Incentives accepted 3486 247

Acceptance rate 100 % 59 %

CO2 reduction 17.9 tons 3.8 tons

policy is much less acceptable than an incentive one.660

On the other hand, the tax policy is not individual-specific, which means that it requires less information

(knowledge of individual utilities is required to compute the tax level from (22) but the tax level does not change

much under imperfect information and so the policy is still efficient).

Tripod policy. We now compute a proportional-incentive policy as in Section 5.2.3. Taking some additional as-

sumption, we call such policy “Tripod” as in Araldo et al. (2019). In particular, we assume that the individuals665

described in the dataset are the first to log-in in the Tripod incentive system, such that budget Q = 1798.59 euros

is depleted after the Tripod system treats them.

The Tripod policy is computed from equation (21), by setting τ (the inverse of the token energy efficiency TEE)

from equation (22), Ai = bi,j∗i (0), for any individual i, and Q = 1798.59 euros.

The Tripod policy, like the personalized-incentive policy, is more adapted in cases where the regulator is endowed670

with a limited budget that he must use as efficiently as possible to increase social welfare. In such cases, however,

our personalized-incentive policy performs better than Tripod. As explained in Remark 5.2.6, the reason is that we

exploit the entire efficiency of the incentivized alternatives, thus getting the most additional social welfare out of

every additional unit of incentive spent. Tripod is instead limited to a fixed efficiency, generally smaller than the

intrinsic efficiency of the incentivized alternatives.675

In this application, both policies reach the same social welfare but the Tripod policy require an incentive budget

twice as large as the personalized-incentive policy.

7.7. Imperfect Information

We show in this section the performance of our allocation policy when the regulator has imperfect information

about individual utilities. In this case, the allocation policy is computed as in Section 6. Using the values of the680

random variables εi,j drawn previously, we can check whether individuals accept the incentives proposed to them.

The policy stops when the daily budget of 1800 euros is depleted.

Table 5 compares the performance of our personalized-incentive policy under the perfect and imperfect informa-

tion assumption. Observe that, as expected, imperfect information decreases the efficacy of the policy. Since the

regulator does not exactly know the individual utilities, it may propose insufficient incentives, which are rejected685

by individuals (it happens 41 % of the times). This results in a smaller reduction of CO2 (21 % compared with the

perfect information case). Note that less individuals are involved in the incentive program (only 12 % compared
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to the perfect information case) because incentive given to single individuals are on average larger, and thus the

budget is depleted more quickly.

These results could be improved by learning from the responses of individual i to the incentives proposed earlier690

in order to compute the incentives that will be proposed to her for other alternatives. For example, if the regulator

observes that individual i refused the incentive to shift from car to walking, he learns information on the random

term of the utility for car of individual i.

Also, if it is not possible to propose incentives to individual i for different alternatives consecutively, the regulator

could propose incentives for multiple alternatives simultaneously.695

These extensions cannot be carried out with Algorithm 1. Future work could study the optimal personalized-

incentive policy under imperfect information.

8. Conclusion

This paper explores a new system of personalized incentives. The agents face a discrete set of alternatives, and

make independent discrete choices. We consider situations where an individual utility for an alternative does not700

coincide with the social utility of this alternative. Such situations call for regulation or State intervention. The

idea is to determine the optimal incentives to be provided to each individual to alter their choices in order to better

align individual benefits and the Principal benefits (note that the Principal can be any regulator). The regulator is

assumed to have a fixed budget for the incentives. Even if individuals make independent choices, the computation

of the incentives to be provided has to consider all individuals’ preferences, so the problem is combinatorial. We705

provided in this paper an algorithm to optimally distribute individual incentives given a budget constraint in order

to maximize the social utility or the social welfare function.

In 2021, this incentive system may be somewhat in advance. Nowadays, individual information is gathered via

GPS, social networks and the Internet of things. This is precious information, which can potentially be used to

optimally compute the optimal set of incentives, and thus to better manage Society. (Privacy issues are ignored710

here, which does not mean they are not important.)

Besides, humans remain unpredictable, and the reader rightly believes he or she is. There is still (and hopefully

for some time) some margin of freedom as far as to what people decide. The recent pandemic shows that individuals

or governments remain unpredictable (Zhang, 2020) and that the right set of incentives remains hard to determine.

As a consequence, individual choices are described by the modeler as being probabilistic. Incentives thus change715

choices up to some probability distribution. While we have just tackled imperfect information in the empirical

application, the treatment of imperfect information appears to be tractable. Preliminary computations, with the

Logit, the workhorse of discrete choice models, suggest that such an extension is promising, including analytically.

Contrarily to the full information case, mainly envisaged in this paper, some incentives may be too large for some

individuals (who could select the same choice with a smaller incentive), and this incentive is then inefficient; other720

incentives may be too small to modify individual choice as expected, and in such a case the incentive is ineffective.

The optimal solution makes a comprise between these two sources of imperfection.

In the empirical application, we have ignored congestion. In our defense, let’s recall that few commuters receive

an incentive, which is a quality of our method. In practice, congestion means that the utility of some individuals

33



can change as other individuals are shifting, which renders the incentive amounts computed ex-ante imprecise. We725

have not solved the current problem with congestion because it is likely to be difficult. But it is not impossible.

An iterative procedure alternating the incentive algorithm and the computation of the current level of congestion

is promising. Congestion can be treated as a static or dynamic (time of the day dependent) process. Much work

remains to be done along this line.

Finally, we have considered so far static choice, i.e., at a given point in historical time. If we consider mode730

choice, it may be the case that incentive for public transport, for example, will have on the long run an impact on

automobile ownership. Moreover, in the medium run, a car left at home can be used by other family members for

short trip. Without any intervention, the trend could yield more trips and vehicle cold starts particularly on local

roads, especially in places where vehicles continue to rely on internal combustion engines. These examples show

the need to also consider the medium and long-run impacts of incentives, by appending a predictive model to the735

incentive algorithm. There are plenty of roads left to run.
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Appendix A. Concavization

The process of concavization (Zoltners et al., 1979, Figures 1 and 2) consists in removing from the set of

alternatives of any individual i some alternatives that we consider “irrelevant”, as introduced in Section 4.1.

We introduce the concepts of dominance and LP-dominance and other definitions from Kellerer et al. (2004,

Section 11.2).745

Definition Appendix A.0.1 (Dominance). Given an individual i and two of her alternatives j, j′, we say that

j dominates j′ if it has a higher social indicator and requires less incentives to be adopted, i.e., bi,j ≥ bi,j′ and

wi,j ≤ wi,j′ .

Note that, from equation (6), the condition wi,j ≤ wi,j′ is equivalent to Vi,j ≥ Vi,j′ and thus the concept of dominance

is equivalent to the concept of Pareto-dominance of Definition Appendix A.0.1. Thanks to Assumption 3.2.5, we750

can assume they have been eliminated from our problem.

Definition Appendix A.0.2 (LP-dominance). Consider three alternatives j, j′, j′′, such that bi,j < bi,j′ <

bi,j′′ and wi,j < wi,j′ < wi,j′′ . We say that j′ is LP-dominated by j and j′′ if

bi,j′′ − bi,j′
wi,j′′ − wi,j′

≥ bi,j′ − bi,j
wi,j′ − wi,j

.

We denote with Ri the set of alternatives of individual i that are neither dominated nor LP-dominated and ri

its cardinality. We call such alternatives LP-extremes. Note that this corresponds to the upper convex hull of Ni,
as in Kellerer et al. (2004, Figure 11.1).
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Appendix B. Proofs755

Proofs of Section 3

Proof of Proposition 3.2.1. Given any policy y, individual i chooses alternative j ∈ Ni, with bi,j > bi,j∗i (0), if

Vi,j + yi,j ≥ Vi,j′ + yi,j′ , ∀j′ ∈ Ni, (B.1)

and

Vi,j + yi,j > Vi,j′ + yi,j′ , ∀j′ ∈ Ni \ {j} : bi,j ≤ bi,j′ . (B.2)

Indeed, equations (B.1) and (B.2) ensure that (4) is satisfied.

Let i ∈ I and j ∈ Ni, and consider a personalized-incentive policy y such that yi,j′ = 0, for any j′ 6= j and

yi,j = Vi,j∗i (0) − Vi,j . Rewriting (B.1) and (B.2), we can claim that individual i chooses alternative j, if

Vi,j∗i (0) ≥ Vi,j′ , ∀j′ ∈ Ni, (B.3)

and

Vi,j∗i (0) > Vi,j′ , ∀j′ ∈ Ni \ {j} : bi,j ≤ bi,j′ . (B.4)

Thanks to equation (5), the personalized-incentive policy y satisfies equation (B.3). It remains to prove that it

always satisfies also equation (B.4). Suppose by contradiction that there exists an alternative j′ ∈ Ni \ {j} such

that bi,j ≤ bi,j′ , which does not satisfy equation (B.4). Then we would have Vi,j∗i (0) ≤ Vi,j′ . By construction760

bi,j′ ≥ bi,j > bi,j∗i (0). This would contradict the definition of default alternative (equation (5)).

At this point of the proof, we have demonstrated the first part of the Proposition, i.e., that, considering an option

j such that bi,j > bi,j∗i (0), a personalized-incentive policy y such that yi,j′ = 0, for any j′ 6= j and yi,j = Vi,j∗i (0)−Vi,j
successfully induces individual i to choose alternative j. We now prove the second part of the Proposition.

Observe that, if yi,j < Vi,j∗i (0) − Vi,j , then Ui,j(y) = Vi,j + yi,j < Vi,j∗i (0) and individual i would never prefer j765

to j∗i (0).

Proof of Proposition 3.2.4. Consider an individual i and an alternative j, Pareto-dominated by another alternative

j′. Suppose that the policy y is such that i is induced to choose j. According to Assumption 3.2.2, the incentive is

yi,j = Vi,j∗i (0) − Vi,j and the individual shifts from her default alternative j∗i (0) to j, increasing the social welfare

by δ = bi,j − bi,j∗i (0).770

We can then construct a policy y′, which is identical to y, except for the incentive proposed to individual i: she

is incentivized to shift from her default alternative to j′, with an incentive y′i,j′ = Vi,j∗i (0) − Vi,j′ . The increase of

social welfare is in this case δ′ = bi,j′ − bi,j∗i (0).
By the definition of Pareto-dominance, y′i,j′ < yi,j and δ′ ≥ δ. Therefore, policy y′ obtains at least the same

increase in social welfare than y but spending less incentive budget. Therefore, it makes no sense to consider policy775

y.

Proofs of Section 4
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Proof of Theorem 4.2.1. If we run Algorithm 1 with budget Q, we practically make the same steps as the MCKP-

Greedy algorithm (Kellerer et al., 2004, equation (11.8) and Figure 11.2). In line 5 of the aforementioned algorithm,

the authors compute an upper bound to the solution of the Multiple Choice Knapsack Problem (9) as

ub = B̄[k] + b̃s,t · (Q− Y [k])/w̃s,t.

where k is the last iteration of the algorithm.

Observing, by the definition of efficiency (13), that ẽs,t = b̃s,t/w̃s,t, we get ub − B̄[k] = ẽs,t · (Q − Y [k]). By

construction, the theoretical maximum social welfare B∗(Q) of problem (9) is less than or equal to the upper bound

ub. Therefore:

B∗(Q)− B̄[k] ≤ ub− B̄[k] = ẽs,t · (Q− Y [k]).

By construction, B(Q) = B̄[k] and Q̃ = Y [k], which gives the inequality (17) that we want to prove. Such inequality

is illustrated in Figures 2 and B.7.

B*(Q) ub
Alg.1 Optimum Upper bound
B[k]

Figure B.7: Illustration of the upper bound from Theorem 4.2.1.

780

Proof of Proposition 4.3.1. To compute the ordered LP-extremes Ri of the individual i we resort to the method

of Kirkpatrick and Seidel (1986) of complexity O(
∑m
i=1 |Ni| · log |Ri|). To obtain the set R, we just need to merge

these ordered sets into an aggregated ordered set. This operation has complexity O(|R| · logm). The rest of the

operations consists in adding to the solution the alternatives in R, one by one, which has complexity O(|R|).

Proof of Proposition 4.3.5. By construction, Algorithm. 1 gets at each iteration the alternative with the highest785

incremental efficiency (Line 8). This proves the first part of the claim.

The second part of the claim can be shown geometrically. In the figure above, we represent the total incentive

and social welfare calculated by the algorithm at each iteration.
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Observe that the incremental efficiency ẽ[k] is the inclination of the segment connecting (Y [k−1], B[k−1]) to790

(Y [k], B[k]) and that the efficiency e[k] is the inclination of the segment connecting (0, 0) to (Y [k], B[k]). It becomes

then evident that the monotonicity of ẽ[k] implies also the monotonicity of e[k].
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Proof of Corollary 4.3.6. Observe that at every iteration k we increase the social welfare by ẽ[k] · (Y [k+1] − Y [k]).

Therefore B(Q) = B(Y [k])+ẽ[k] ·(Y [k+1]−Y [k])+ẽ[k+1] ·(Y [k+2]−Y [k+1])+. . . . Observing that ẽ[k] is non increasing,

we get: B(Q) ≤ B(Y [k]) + ẽ[k] ·
[
(Y [k+1] − Y [k]) + (Y [k+2] − Y [k+1]) + . . .

]
= B(Y [k]) + ẽ[k] · (Q− Y [k])795

Proofs of Section 5

Proof of the Proposition 5.1.2. From equations (1), (3), (18) and (19), observe that

δ(z) =

m∑

i=1

(
Vi,j∗i (0) − Vi,j∗i (z)

)
≥ 0,

Proof of Proposition 5.1.4. Thanks to Proposition 5.1.2, δ(z′) = δ(z) ≤ Q. Moreover, the social welfare is also the

same, i.e., B(z) = B(z′), since it only depends on the alternative chosen. This shows the proposition.

Proof of Proposition 5.1.5. Assume, by contradiction, that the optimal personalized-incentive policy y is not an800

optimal general policy. This would imply the existence of a policy z such that B(z) > B(y) and δ(z) ≤ Q.

Consider now a personalized-incentive policy y′ such that




y′i,j = Vi,j∗i (0) − Vi,j , if j = j∗i (z)

y′i,j = 0, otherwise
.

Then, by construction, y′ is such that j∗i (y′) = j∗i (z), ∀i ∈ I.
Moreover, observe that y′ is such that B(y′) > B(y) and Y (y′) = δ(y′) ≤ Q. Therefore, y′ would be a better

personalized-incentive policy than y, which is absurd, since by construction y is an optimal personalized-incentive

policy.805

Proof of Corollary 5.1.6. Let B(Q) be the social welfare returned by Algorithm 1 for a budget Q. We know from

Theorem 4.2.1 that it is boundedly close to the social welfare B∗(Q) obtained with an optimal personalized-incentive

policy, with the following bound

B∗(Q)−B(Q) ≤ ẽs,t · (Q− Q̃).

Thanks to Proposition 5.1.5, B∗(Q) is also the social welfare obtained via an optimal general policy with disutility

threshold Q. This proves the Corollary.

Proof of Proposition 5.2.1. By construction, the enforcement policy z induce the same individual alternatives as the

personalized-incentive policy y. Then, thanks to Proposition 5.1.2, they have the same disutility δ(z) = δ(y) ≤ Q

and achieve the same social welfare B(z) = B(y). Thanks to Corollary 5.1.6, B(y) is boundedly close to the810

optimum B(Q), and so is B(z).

Proof of Theorem 5.2.2. Let z be a policy such that zi,j = τ(bi,j −Ai), with τ given by equation (22) and Ai ∈ R.

Let y be the personalized-incentive policy obtained running the algorithm as explained in the statement of this

theorem. Thanks to Corollary 5.1.6, we know that B(y) is such that

B∗(Q)−B(y) ≤ ẽs,t · (Q− Q̃). (B.5)
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If we prove that j∗i (y) = j∗i (z), ∀i ∈ I, we could claim that B(z) = B(y) and also, thanks to Proposition 5.1.2,

that δ(z) = δ(y) ≤ Q. In this case, the bound (B.5) would also hold for z.

To do so, we show that (i) alternative j∗i (z) is in the set Ri of the LP-extremes alternatives and (ii) alternative815

j∗i (y) maximizes Ui,j(z) = Vi,j + τ(bi,j −Ai), over all alternatives j ∈ Ri.

Proof of (i). Assume, by contradiction, that j∗i (z) is LP dominated by alternatives j and j′, i.e., bi,j < bi,j∗i (z) < bi,j′

and yi,j < yi,j∗i (z) < yi,j′ , and
bi,j′ − bi,j∗i (z)
wi,j′ − wi,j∗i (z)

≥
bi,j∗i (z) − bi,j
wi,j∗i (z) − wi,j

.

From equation (8), wi,j = Vi,j∗i (0) − Vi,j and thus the previous condition can be written as

bi,j′ − bi,j∗i (z)
Vi,j∗i (z) − Vi,j′

≥
bi,j∗i (z) − bi,j
Vi,j − Vi,j∗i (z)

.

Multiplying by τ > 0 on both sides and adding and substracting Ai yields

τ
bi,j′ − bi,j∗i (z) −A+A

Vi,j∗i (z) − Vi,j′
≥ τ

bi,j∗i (z) − bi,j −A+A

Vi,j − Vi,j∗i (z)
.

Rearranging the terms and using equation (21) yields

zi,j′ − zi,j∗i (z)
Vi,j∗i (z) − Vi,j′

≥
zi,j∗i (z) − zi,j
Vi,j − Vi,j∗i (z)

.

Finally, using equation (1), we get

Ui,j′(z)− Ui,j∗i (z)(z)

Vi,j∗i (z) − Vi,j′
≥
Ui,j∗i (z)(z)− Ui,j(z)

Vi,j − Vi,j∗i (z)
.

Let α = Vi,j − Vi,j∗i (z) and α′ = Vi,j∗i (z) − Vi,j′ . From yi,j < yi,j∗i (z) < yi,j′ , it follows that Vi,j > Vi,j∗i (z) > Vi,j′ and

thus α, α′ > 0. Then, we get
Ui,j′(z)− Ui,j∗i (z)(z)

α′
≥
Ui,j∗i (z)(z)− Ui,j(z)

α
.

By simple arithmetic calculation, one can see that this is equivalent to

αUi,j′(z) + α′Ui,j(z)

α+ α′
≥ Ui,j∗i (z)(z). (B.6)

Equation (B.6) means that the utility of j∗i (z) is less than or equal to the weighted average of the utility of j and

j′. Two cases could then hold:

• Either j or j′ is preferred to j∗i (z), i.e., Ui,j(z) > Ui,j∗i (z)(z) or Ui,j′(z) > Ui,j∗i (z)(z). This would mean that

j∗i (z) does not maximizes utility and would contradict equation (4).820

• The three alternatives are equivalent, i.e., Ui,j(z) = Ui,j∗i (z)(z) = Ui,j′(z). This would also contradict equation

(4) because bi,j′ > bi,j∗i (z), by assumption.

Therefore, j∗i (z) is not a LP-dominated alternative. Clearly, j∗i (z) is not dominated either and thus j∗i (z) ∈ Ri.
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Proof of (ii). The proof of (ii) requires the following lemmas.

Lemma A If the alternatives in Ri are ordered according to equation (11), i.e., they are ordered by increasing

weight, then

ẽi,1 > ẽi,2 > · · · > ẽi,ri .

825

To prove this lemma, show by contradiction that if ẽi,j ≤ ẽi,j+1, then j would be LP-dominated by j − 1 and

j + 1.

Lemma B If j ∈ Ri is such that ẽi,j ≥ 1/τ , then Ui,j−1(z) ≤ Ui,j(z), where j − 1 denotes the alternative which

comes just before j in the ordered set Ri.
To prove this lemma, note that, using equations (8), (12) and (13), the inequality ẽi,j ≥ 1/τ can be written as

bi,j − bi,j−1
Vi,j−1 − Vi,j

≥ 1/τ.

Multiplying by τ(Vi,j − Vi,j−1) > 0, subtracting τ · Ai from both sides and rearranging the terms, we get Vi,j−1 −830

τ(A− bi,j−1) ≤ Vi,j − τ(A− bi,j). Using equations (21) and (1) yields Ui,j−1(z) ≤ Ui,j(z).

Lemma C If j ∈ Ri is such that ẽi,j < 1/τ , then Ui,j−1(z) > Ui,j(z), where j − 1 denotes the alternative which

comes just before j in the ordered set Ri.
This lemma can be proved with the same reasoning as Lemma B.

Let j ∈ Ri be such that

ẽi,j ≥ 1/τ > ẽi,j+1. (B.7)

Then, Lemmas A and B imply that the alternatives in the set {j′ ∈ Ri : j′ ≤ j} are ordered by non-decreasing835

utility. Similarly, Lemmas A and C imply that the alternatives in the set {j′ ∈ Ri : j′ ≥ j} are ordered by

decreasing utility. Hence, alternative j, defined by equation (B.7), is the alternative which maximizes the utility

Ui,j(z), over all alternatives in Ri.
Observe that, by construction of Algorithm 1, the alternative j∗i (y) satisfies equation (B.7). Hence, alternative

j∗i (y) maximizes the utility Ui,j(z), over all alternatives j ∈ Ri. As we have shown that j∗i (z) ∈ Ri, it must be that840

j∗i (y) = j∗i (z).

Proof of Proposition 5.2.3. For any individual i ∈ I, let us consider the alternative j∗i (z) she chooses under policy

z and compute the respective incentive

zi,j∗i (z) = τ · (bi,j∗i (z) −Ai) ≥ τ · (bi,j∗i (z) − bi,j∗i (0)) ≥ Vi,j∗i (0) − Vi,j∗i (z).

where the first inequality is a consequence of the definition of proportional-incentive policy – see (23), while the

last inequality ensures that the incentive compensates for the loss in individual utility when shifting to alternative

j∗i (z), which is a necessary condition for the individual to accept the incentive and shift to j∗i (z).

Therefore, recalling from Definition 4.1.1 that the efficiency of a generic alternative j as ei,j ≡
bi,j−bi,j∗

i
(0)

Vi,j∗
i
(0)−Vi,j , we

can write:
1

τ
≤ ei,j∗i (z), ∀i ∈ I =⇒ 1

τ
≤ min

i∈I
ei,j∗i (z)
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Observe that the smaller τ , the smaller the incentive spent by z. Therefore, it is always best to choose

τ =
1

mini∈I ei,j∗i (z)

Let us now consider a policy y that incentivizes the same individuals i ∈ I. In particular, it incentivizes the845

same alternative j∗i (z), with a quantity yi,j∗i (z) = Vi,j∗i (0) − Vi,j∗i (z). This incentive is sufficient to induce each

individual to choose such an alternative. Therefore, the social welfare of this new policy y will be the same as z,

i.e., B(y) = B(z). However, the saving of incentive distributed is:

Y (z)− Y (y) =
∑

i∈I
(zi,j∗i (z) − yi,j∗i (z)) =

∑

i∈I
(bi,j∗i (z) − bi,j∗i (0)) ·

(
τ − 1

ei,j∗i (z)

)

=
1

τ
·
∑

i∈I

bi,j∗i (z) − bi,j∗i (0)
ei,j∗i (z)

·
(
ei,j∗i (z) −

1

τ

)
=

1

τ
·
∑

i∈I

(
Vi,j∗i (z) − Vi,j∗i (0)

)
·∆ei,j∗i (z)

Proof of Proposition 5.2.4. Let us run Algorithm 1 with budget Q = Y (z), which allows to get the values of ẽY (z)

and γY (z). Thanks to Proposition 5.2.3, there always exists a personalized-incentive policy policy y that achieves

at least the same social welfare of z:

B(y) ≥ B(z) (B.8)

while providing incentive savings of at lest L(z). Let k′ be the first iteration of the algorithm in which Y [k′] ≥ Y (y)850

and k′′ the last iteration in which Y [k′′] ≤ Y (z).

First, suppose L(z) ≥ 2γY (z). In this case, observe that

Y [k′] − Y (y) ≤ γY (z)

Y (z)− Y [k′′] ≤ γY (z)

Y (z)− Y (y) ≥ L(z).

This is shown, for the sake of understanding, in the following figure

Y(y) Y(z)

≥ L(z)

Y[k’-1] Y[k’]

≤ γ
Y(z)

 

Y[k’’] Y[k’’+1]

≤ γ
Y(z)

 

Summing the first two of the inequalities above and then replacing Y (z) − Y (y) with the third inequality, we

get

Y [k′] − Y [k′′] + L(z) ≤ Y [k′] − Y (y) + Y (z)− Y [k′′] ≤ 2γY (z)

Rearranging the elements between the first and third terms, we get

Y [k′′] − Y [k′] ≥ L(z)− 2γY (z). (B.9)
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Observe that:

B[k′′]−B[k′] =

k′′−1∑

k=k′

(B[k+1]−B[k]) =

k′′−1∑

k=k′

ẽ[k] · (Y [k+1]− Y [k]) ≥ ẽ[k′′] =

k′′−1∑

k=k′

(Y [k+1]− Y [k]) = ẽ[k
′′] · (Y [k′′]− Y [k′])

where the inequality holds thanks to the monotonicity of incremental efficiencies (Proposition 4.3.5). Applying (B.9):

B[k′′] −B[k′] ≥ ẽ[k′′] · (L(z)− 2γY (z))

By construction, ẽ[k
′′] = ẽY (z). Moreover, B∗(Y (z)) ≥ B∗(Y [k′′]) = B[k′′], where the inequality holds thanks to

the monotonicity of the maximum social welfare curve and the equality holds thanks to Corollary 4.2.3 . We also855

know that B[k′] = B∗(Y [k′]) ≥ B∗(Y (y)) ≥ B(y) ≥ B(z), where the first equality derives from Corollary 4.2.3, the

second inequality from the monotonicity of the maximum social welfare curve, the third inequality by the definition

of optimal personalized-incentive policy and the last by (B.8).

Proofs of Section 6860

Proof of Proposition 6.0.1. Let ξ = εi,j∗i (0) − εi,j . Then, ξ is the difference of two i.i.d. Gumbel-distributed random

variables with scale parameter µ, and thus it is a logistic-distributed random variable with scale parameter µ

(Nadarajah and Kotz, 2005). Its probability density function is f(x) = ex/µ

µ(ex/µ+1)2
and its cumulative distribution

function is F (x) = ex/µ

ex/µ+1
. For any z ∈ R, we have

E(ξ|ξ > z) =

∫∞
z
xf(x)dx

1− F (z)
=

1

1− ez/µ/(1 + ez/µ)

∫ ∞

z

xex/µ

µ(ex/µ + 1)2
dx =

(
1 + ez/µ

)∫ ∞

z

xex/µ

µ(ex/µ + 1)2
dx.

Using
∂

∂x

(
− x

ex/µ + 1

)
=

xex/µ

µ(ex/µ + 1)2
− 1

ex/µ + 1
,

and
∂

∂x
µ ln(1 + e−x/µ) =

−e−x/µ
1 + e−x/µ

=
−1

ex/µ + 1
,

we get
∫ ∞

z

xex/µ

µ(ex/µ + 1)2
dx =

z

ez/µ + 1
−
∫ ∞

z

−1

ex/µ + 1
dx.

=
z

ez/µ + 1
+ µ ln(1 + e−z/µ).

Finally,

yi,j = ŷi,j + E(ξ|ξ > −ŷi,j)

= ŷi,j − ŷi,j + µ(1 + e−ŷi,j/µ) ln(1 + eŷi,j/µ)

= µ
1 + eŷi,j/µ

eŷi,j/µ
ln(1 + eŷi,j/µ).
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Appendix C. Census Data Description

We now describe the census data we use.6 They are published by INSEE and concern the period from 2015 to

2019. The data contain observations for 7 861 201 households, representing 21 810 707 individuals (about a third of

national population). Only one individual is surveyed in each household, which means that, for example, the main865

mode of transportation is only observed for one individual in the household. Hence, in each household, we consider

only the surveyed individual.

We restrict our sample to workers living and working in the Rhône department, with a valid mode of transporta-

tion (i.e., unemployed and individuals working from home are excluded). We remove some outliers, i.e., individuals

traveling more than 90 minutes, which were about 2000. The final dataset contains 221 571 individuals. The total870

number of alternatives is 1 092 748.

Note that census data do not represent an exhaustive sample of the population. Therefore, some categories of

individuals might be over- or under-represented. To correct for such imbalances, INSEE computes a weight for each

surveyed person. To compute the statistics below and to perform the multinomial regression, we use these weights.

Home and Work Location.. The home and work location of the individuals is reported at the city-level, except for875

Lyon where it is reported at the district-level. There are 275 unique home locations (an average of 812 individuals

living at each location).

Mode of Transportation.. The main mode of transportation used for commuting is in one of the following five

categories: car, public transit, walking, cycling and motorcycle. The share of each category are reported on Table

C.6.880

Table C.6: Share of each mode of transportation reported.

Mode of transportation Share

Car 60.69 %

Public transit 25.07 %

Walking 8.83 %

Cycling 3.95 %

Motorcycle 1.47 %

Source: population census for Rhône department, INSEE.

Socio-Demographic Variables.. The data contain socio-demographic variables which are used to estimate a multi-

nomial logit model for mode choice. Table C.7 reports the list of numeric variables that we use, Table C.8 reports

the list of categorical variables that we use.

6https://www.insee.fr/fr/statistiques/4507890
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Table C.7: Description of the numeric socio-demographic variables.

Name Description Mean

Age Age of the individual, rounded to the nearest five-year age group 38.49

Cars per individual Number of cars owned divided by number of employed in the household 0.84

Source: population census for Rhône department, INSEE.

Table C.8: Description of the categorical socio-demographic variables.

Name Description Most frequent category

Sex Sex of the individual man (50.67 %)

Occupation Occupation of the individual, using INSEE nomenclature employee (24.93 %)
Source: population census for Rhône department, INSEE.

Appendix D. Computation of Travel Times

For any individual, the origin point of her trips is set to the town hall of the city where she lives and the885

destination point is set to the town hall of the city where she works (for district-level home and workplace, the town

hall of the district is used). The coordinates of the town halls are retrieved from OpenStreetMap.

Travel time of each mode is set to the travel time of the fastest path, within that mode, which connects the

two locations, computed from the open-source routing engine GraphHopper. The road network for pedestrians,

bicycles, motorcycles and cars is retrieved from OpenStreetMap data. It is assumed that there is no congestion. For890

public transit trips, the fastest path is computed using public transit timetables, retrieved from open-data GTFS

files. The departure time is assumed to be at 8 a.m. on a weekday.

Note that, for some individuals, no path can be found to travel by public transit from their origin to their

destination (16 161 individuals, representing 10.87% of total sample weight). For these individuals, we exclude

public transit from their choice set.895

Some individuals are living and working in the same city (61 497 individuals, representing 26.61 % of total sample

weight). For these individuals, travel times are computed by supposing that trip distance is equal to the radius of

the city (assuming cities are circular) and that speed is equal to the average speed of intercity trips.

Figure D.8 shows the distribution of travel times in the population, for each mode of transportation. Except for

public transit trips, most trips last less than 30 minutes.900
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Figure D.8: Distribution of travel times in the population (before the policy).

Appendix E. Simulating Utilities

In the multinomial logit model, the utility of individual i with mode of transportation j is

Vi,j = V̂i,j + εi,j ,

where V̂i,j is the deterministic part of the utility, which depends on the individual- and alternative-specific exogenous

variables, and εi,j is a random variable with standard Gumbel distribution.

The deterministic part V̂i,j are computed from the estimates of the multinomial logit model. From the data, we

know the alternative j∗i (0) chosen by any individual i so we must have

Vi,j∗i (0) > Vi,j , ∀j 6= j∗i (0). (E.1)

To simulate draws of standard Gumbel variables conditional on equation (E.1), we use the rejection sampling

method, i.e., we draw values from the standard Gumbel distribution until the constraint of equation (E.1) is905

satisfied.

References

Anderson, S.P., de Palma, A., Thisse, J.F., 1992. Discrete choice theory of product differentiation. MIT press.

Araldo, A., Di Stefano, A., Di Stefano, A., 2020. Resource Allocation for Edge Computing with Multiple Tenant

Configurations, in: ACM/SIGAPP Symposium On Applied Computing.910

Araldo, A., S.l Gao, Seshadri, R., Azevedo, C.L., Ghafourian, H., Sui, Y., Ayaz, S., Sukhin, D., Ben-Akiva, M.,

2019. System-level optimization of multi-modal transportation networks for energy efficiency using personalized

incentives. Transportation Research Records 2673.

45



Arcep, 2021. Le plan France Très Haut Débit. https://www.arcep.fr/demarches-et-services/collectivites/le-plan-

france-tres-haut-debit-pfthd.html.915

Bureau, D., Henriet, F., Schubert, K., 2019. A proposal for the climate: Taxing carbon not people. Notes du conseil

d’analyse économique , 1–12.

Cao, N., Brahma, S., Varshney, P.K., 2015. Target tracking via crowdsourcing: A mechanism design approach.

IEEE Transactions on Signal Processing 63, 1464–1476.

Chester, M.V., Horvath, A., Madanat, S., 2010. Comparison of life-cycle energy and emissions footprints of passenger920

transportation in metropolitan regions. Atmospheric Environment 44, 1071–1079. URL: http://dx.doi.org/

10.1016/j.atmosenv.2009.12.012, doi:10.1016/j.atmosenv.2009.12.012.

Clarke, A., Margetts, H., 2014. Governments and citizens getting to know each other? open, closed, and big data

in public management reform. Policy & Internet 6, 393–417.

Colorni, A., Ferretti, V., Luè, A., Oppio, A., Paruscio, V., Tomasini, L., 2017. Rethinking feasibility analysis for925

urban development: A multidimensional decision support tool, in: Computational Science and its Applications -

ICCSA. doi:10.1007/978-3-319-62398-6_44.

De Borger, B., 2001. Discrete choice models and optimal two-part tariffs in the presence of externalities: optimal

taxation of cars. Regional Science and Urban Economics 31, 471–504.

Ettema, D., Knockaert, J., Verhoef, E., 2010. Using incentives as traffic management tool: empirical results of the"930

peak avoidance" experiment. Transportation Letters 2, 39–51.

Fielder, A., Panaousis, E., Malacaria, P., Hankin, C., Smeraldi, F., 2016. Decision support approaches for cyber

security investment. Decision Support Systems 86, 13–23. URL: http://dx.doi.org/10.1016/j.dss.2016.02.

012, doi:10.1016/j.dss.2016.02.012.

Hu, X., Chiu, Y.C., Zhu, L., 2015. Behavior Insights for an Incentive-Based Active Demand Management Platform.935

International Journal of Transportation Science and Technology 4, 119–133. URL: http://dx.doi.org/10.

1260/2046-0430.4.2.119, doi:10.1260/2046-0430.4.2.119.

Inoa, I.A., Picard, N., de Palma, A., 2015. Effect of an accessibility measure in a model for choice of residential

location, workplace, and type of employment. Mathematical Population Studies 22, 4–36.

Kellerer, H., et al., 2004. Knapsack Problems. 1st ed., Springer.940

Kirkpatrick, D.G., Seidel, R., 1986. The Ultimate Planar Convex Hull Algorithm? SIAM J. Comput. 15, 1–18.

URL: http://ecommons.cornell.edu/handle/1813/6417, doi:10.1137/0215021.

Levy, D., Le Jeannic, T., 2011. Un habitant de pôle urbain émet deux fois moins de co2 que la moyenne pour se

rendre à son lieu de travail ou d’études. INSEE Première .

46

http://dx.doi.org/10.1016/j.atmosenv.2009.12.012
http://dx.doi.org/10.1016/j.atmosenv.2009.12.012
http://dx.doi.org/10.1016/j.atmosenv.2009.12.012
http://dx.doi.org/10.1016/j.atmosenv.2009.12.012
http://dx.doi.org/10.1007/978-3-319-62398-6_44
http://dx.doi.org/10.1016/j.dss.2016.02.012
http://dx.doi.org/10.1016/j.dss.2016.02.012
http://dx.doi.org/10.1016/j.dss.2016.02.012
http://dx.doi.org/10.1016/j.dss.2016.02.012
http://dx.doi.org/10.1260/2046-0430.4.2.119
http://dx.doi.org/10.1260/2046-0430.4.2.119
http://dx.doi.org/10.1260/2046-0430.4.2.119
http://dx.doi.org/10.1260/2046-0430.4.2.119
http://ecommons.cornell.edu/handle/1813/6417
http://dx.doi.org/10.1137/0215021


Merugu, D., Prabhakar, B.S., Rama, N., 2009. An incentive mechanism for decongesting the roads: A pilot program945

in bangalore, in: Proc. of ACM NetEcon Workshop, Citeseer.

Mirhedayatian, S.M., Yan, S., 2018. A framework to evaluate policy options for supporting electric vehicles in

urban freight transport. Transportation Research Part D: Transport and Environment 58, 22–38. URL: https:

//doi.org/10.1016/j.trd.2017.11.007, doi:10.1016/j.trd.2017.11.007.

Mohammadivojdan, R., Geunes, J., 2018. The newsvendor problem with capacitated suppliers and quantity dis-950

counts. European Journal of Operational Research 271, 109–119. URL: https://doi.org/10.1016/j.ejor.

2018.05.015, doi:10.1016/j.ejor.2018.05.015.

Muñoz, B., Monzon, A., Daziano, R.A., 2016. The increasing role of latent variables in modelling bicycle mode

choice. Transport Reviews 36, 737–771.

Nadarajah, S., Kotz, S., 2005. A generalized logistic distribution. International Journal of Mathematics and955

Mathematical Sciences 2005, 3169–3174.

Quinet, A., Baumstark, L., Célestin-Urbain, J., Pouliquen, H., Auverlot, D., Raynard, C., 2009. La valeur tutélaire

du carbone. Rapport du Conseil d’Analyse Stratégique 16, 9305.

Small, K.A., Rosen, H.S., 1981. Applied welfare economics with discrete choice models. Econometrica 49, 105–130.

Sun, J., Wu, J., Xiao, F., Tian, Y., Xu, X., 2020. Managing bottleneck congestion with incentives. Transportation960

Research Part B: Methodological 134, 143–166. URL: https://doi.org/10.1016/j.trb.2020.01.010, doi:10.

1016/j.trb.2020.01.010.

Tang, Y., Jiang, Y., Yang, H., Nielsen, O.A., 2020. Modeling and optimizing a fare incentive strategy to manage

queuing and crowding in mass transit systems: Modeling and optimizing a fare incentive strategy to manage

queuing and crowding in mass transit systems. Transportation Research Part B: Methodological 138, 247–267.965

doi:10.1016/j.trb.2020.05.006.

Wardman, M., Chintakayala, P., de Jong, G., Ferrer, D., 2012. European wide meta-analysis of values of travel

time. ITS, University of Leeds, Paper prepared for EIB .

Yue, J.S., Mandayam, C.V., Merugu, D., Abadi, H.K., Prabhakar, B., 2015. Reducing road congestion through

incentives: a case study, in: Transportation Research Board 94th Annual Meeting, Washington, DC.970

Zhang, J., 2020. Transport policymaking that accounts for covid-19 and future public health threats: A pass

approach. Transport policy 99, 405–418.

Zhong, T., Young, R., 2010. Multiple Choice Knapsack Problem: Example of planning choice in transportation.

Evaluation and Program Planning 33, 128–137. doi:10.1016/j.evalprogplan.2009.06.007.

Zoltners, A.A., Sinha, P., Chong, P.S.C., 1979. An Optimal Algorithm for Sales Representative Time Management.975

Management Science 25, 1197–1207.

47

https://doi.org/10.1016/j.trd.2017.11.007
https://doi.org/10.1016/j.trd.2017.11.007
https://doi.org/10.1016/j.trd.2017.11.007
http://dx.doi.org/10.1016/j.trd.2017.11.007
https://doi.org/10.1016/j.ejor.2018.05.015
https://doi.org/10.1016/j.ejor.2018.05.015
https://doi.org/10.1016/j.ejor.2018.05.015
http://dx.doi.org/10.1016/j.ejor.2018.05.015
https://doi.org/10.1016/j.trb.2020.01.010
http://dx.doi.org/10.1016/j.trb.2020.01.010
http://dx.doi.org/10.1016/j.trb.2020.01.010
http://dx.doi.org/10.1016/j.trb.2020.01.010
http://dx.doi.org/10.1016/j.trb.2020.05.006
http://dx.doi.org/10.1016/j.evalprogplan.2009.06.007

	WP LJ_AA_ADP_tr-partb-1.pdf
	Introduction
	Related Work
	Incentive Policies in Transportation
	Multiple Choice Knapsack Problem in Economics and Transportation
	Multiple Choice Knapsack Problem in Computer Science and other Domains
	Position with respect to the Related Work

	Framework and Personalized-Incentive Policy
	Model and Assumptions
	Personalized-Incentive Policies
	Maximum Social Welfare Problem
	Maximum Social Welfare Curve Problem

	Approximation Algorithm
	Preliminary Steps
	Greedy Algorithm
	Useful Properties for Large-Scale Applications

	Comparison with Other Policies
	Optimality of Personalized-Incentives Policies among General Policies
	Computing Optimal Enforcement and Proportional Tax-Subsidy Policy
	Enforcement Policy
	Proportional Tax-Subsidy Policy
	Comparison with Proportional-Incentive Policy and Tripod


	Imperfect Information
	Numerical Results in an Application to Mode Choice
	Data
	Multinomial Logit Model
	Simulating Utilities
	Computing the Social Indicator
	Calculation of the Personalized-Incentive Policy
	Comparison with Other Policies
	Imperfect Information

	Conclusion
	Concavization
	Proofs
	Census Data Description
	Computation of Travel Times
	Simulating Utilities


