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Abstract

We propose the Inverse Product Differentiation Logit (IPDL) model, a

structural (inverse) demand model for differentiated products that captures

market segmentation with segments that may overlap in any way. The IPDL

model generalizes the nested logit model to allow richer substitution patterns,

including complementarity in demand, and can be estimated by linear instru-

mental variable regression using aggregate data. We use the IPDL model to

estimate the demand for cereals in Chicago. We then extend it to a general

demand model that is consistent with a utility model of heterogeneous, utility-

maximizing consumers. (JEL: C26, D11, D12, L)
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1 Introduction

We propose the Inverse Product Differentiation Logit (IPDL) model of demand for
differentiated products. The IPDL model is a structural inverse demand model that
captures market segmentation by several characteristics with segments that may
overlap in any way. It improves on the nested logit model by accommodating richer
substitution patterns but has the same attractive features: first, following Berry
(1994), the IPDL model can easily be estimated by linear instrumental variables
regression to deal with the endogeneity of prices and market shares while allow-
ing for unobserved product characteristics; second, it is consistent with a model of
heterogeneous, utility-maximizing consumers.

The nested logit model is commonly used to estimate the aggregate demand
in differentiated products markets that exhibit product segmentation (e.g. Björner-
stedt and Verboven, 2016; Berry et al., 2016). Its inverse demand function has a
closed-form expression, which makes standard linear instrumental variable regres-
sion techniques easily applicable. However, it imposes severe restrictions on the
substitution patterns. In particular, the substitution between products is implied by
a nesting structure that groups products into nests according to one or more char-
acteristics. The nested logit model restricts this nesting structure to be hierarchical,
nests at one level of segmentation are divided into subnests at the next level and so
on. Moreover, the sequence in the hierarchy is not unique and often not obvious.1

In many applications, a non-hierarchical structure is more appropriate. A pleth-
ora of GEV models (McFadden, 1978; Fosgerau et al., 2013) based on different non-
hierarchical structures have been proposed.2 However, none of the GEV models
beyond the nested logit model yield inverse demand in closed form. Like these GEV

1Hellerstein (2008) writes, concerning the beers market, “[D]emand models such as the multi-
stage budgeting model or the nested logit model do not fit this market particularly well. It is difficult
to define clear nests or stages in beer consumption because of the high cross-price elasticities be-
tween domestic light beers and foreign light and regular beers. When a consumer chooses to drink
a light beer that also is an import, it is not clear if he categorized beers primarily as domestic or
imported and secondarily as light or regular, or vice versa.”

2These models include, e.g. the ordered logit (Small, 1987), the ordered nested logit (Grigolon,
2020), and the FC-MNL (Davis and Schiraldi, 2014). Closest in spirit to the IPDL model is the prod-
uct differentiation logit model (Bresnahan et al., 1997), which defines a non-hierarchical structure
by grouping products along several characteristics.
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models, the IPDL model relies on a general non-hierarchical structure to control the
substitution patterns, where products that share more overlapping groups are closer
substitutes. The crucial difference is that the non-hierarchical structure retains the
IPDL inverse demand function in closed form.

A large literature employs the BLP method (Berry et al., 1995), which uses a
random coefficient logit (RCL) model with structural error terms to allow for unob-
served product characteristics, and which handles endogeneity of prices and market
shares. Substitution patterns are determined by a random coefficients specification
of the distribution of unobserved preference heterogeneity, which means that com-
plementarity is ruled out. By contrast, the substitution patterns in the IPDL model
are determined by a segmentation of the differentiated products, which leads to a
model that allows complementarity. The BLP method involves a non-linear, non-
convex optimization problem as well as the simulation and numerical inversion of
the demand function.3 By contrast, the IPDL model can be estimated by linear in-
strumental variable regression to deal with endogeneity issues due to the presence
of unobserved product characteristics. Indeed, with the IPDL model, we depart
from the BLP method by directly specifying the inverse demand function so that
numerical demand inversion is not required.

The IPDL model is consistent with utility maximization. We introduce the Gen-
eralized Logit (GL) inverse demand model, which has the IPDL model as a special
case, and show that any GL model is consistent with a representative consumer
who chooses a vector of market shares to maximize her utility function subject to a
budget constraint, trading off variety against quality.4 Furthermore, the GL model is
consistent with the model of utility-maximizing, heterogeneous consumers of Allen
and Rehbeck (2019b). Finally, we show that any Additive Random Utility Model
(ARUM) (McFadden, 1981), is a GL model, but not vice-versa.

Important economic questions hinge on whether products are substitutes or

3Conlon and Gortmaker (2020) consolidate best estimation practices in a python package. Note
also that other approaches that implement the BLP estimator have been proposed (Dubé et al., 2012;
Lee and Seo, 2015).

4In the GL model, the taste for variety is given by a generalization of entropy. When the model
corresponds to an additive random utility model, it is the convex conjugate (Rockafellar, 1970) of
the surplus function (Hofbauer and Sandholm, 2002; Galichon and Salanié, 2020; Fosgerau et al.,
2020).
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complements in demand, i.e. on the sign of cross-price elasticities of demand. In
particular, this directly affects the incentives to introduce a new product on the mar-
ket, to bundle products, to merge, etc. (Gentzkow, 2007; Iaria and Wang, 2020). In
contrast to the ARUM (and hence also to the RCL model), products can be comple-
ments in the IPDL and GL models. As a by-product, we therefore establish a new
demand inversion result for the GL model, which extends Berry (1994) and supple-
ments Berry et al. (2013) by allowing complementarity in unit-demand models.

Other approaches exist for estimating the demand for differentiated products
(see, e.g. Barnett and Serletis, 2008; Nevo, 2011). One is the flexible functional
form approach (e.g. the AIDS model of Deaton and Muellbauer, 1980), which has
been successfully applied to many economic questions. However, in this approach,
the econometric error terms have no immediate structural interpretation, there are
very many parameters to estimate, and the introduction of new products cannot be
addressed. Other authors (e.g., Pinkse and Slade, 2004; Haag et al., 2009; Blundell
et al., 2012) propose to estimate demand functions semi- or non-parametrically.
Closest to our approach is Compiani (2020) who suggests to non-parametrically
estimate inverse demand functions for differentiated products based on aggregate
data. This last approach faces the trade-off between functional form restrictions
and the need for large datasets.

The paper is organized as follows. Section 2 presents our general setting and
discuss the role of demand inversion. Section 3 introduces the IPDL model, dis-
cusses estimation with aggregate data, and presents simulations suggesting that the
IPDL model offers a good compromise between computational simplicity and rich-
ness of the substitution patterns. Section 4 uses the IPDL model to estimate the
demand for ready-to-eat cereals in Chicago, finding evidence that complementarity
exists between some products from different market segments. Section 5 introduces
the Generalized Logit model. Section 6 relates the GL model to the ARUM and the
representative consumer model. Section 7 concludes. A supplement provides sim-
ulations results on the IPDL model as well as general methods and examples for
building other GL models than the IPDL model.
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2 General Setting

We begin by introducing our setting and discussing the role of demand inversion
for estimation. Consider a population of consumers making choices among a set of
J + 1 differentiated products, indexed by J = {0, 1, . . . , J}, where product j = 0

is the outside good. We consider aggregate data on market shares sjt, prices pjt and
K product/market characteristics xjt for each product j = 1, . . . , J in each market
t = 1, . . . , T (Berry, 1994; Berry et al., 1995; Nevo, 2001). For each market t, the
market shares sjt are positive and sum to 1, i.e. st = (s0t, . . . , sJt) ∈ relint(∆),
where relint(∆) is the relative interior of the unit simplex in RJ+1.

Following Berry and Haile (2014), let δjt ∈ R be an index given by

δjt = δ (pjt, xjt, ξjt;θ1) , j ∈ J , t = 1, . . . , T,

where ξjt ∈ R is an unobserved characteristics term for product/market jt and θ1

is a vector of parameters. Consider the system of demand equations

sjt = σj (δt;θ2) , j ∈ J , t = 1, . . . , T, (1)

which relates the vector of observed market shares, st = (s0t, . . . , sJt)
ᵀ, to the

vector of product indexes δt = (δ0t, . . . , δJt)
ᵀ, through the demand function σ =

(σ0, . . . , σJ), where θ2 is a vector of parameters.
Normalize the index of the outside good by setting δ0t = 0 in each market t so

that δt ∈ D ≡ {δt ∈ RJ+1 : δ0t = 0}, and assume that the function σ(·;θ2) : D →
relint(∆) is invertible. Then the inverse demand function, denoted by σ−1

j , maps
from market shares st to each index δjt with

δjt = σ−1
j (st;θ2) , j ∈ J , t = 1, . . . , T. (2)

In addition, assume a linear index,

δjt = xjtβ − αpjt + ξjt, j ∈ J , t = 1, . . . , T,

where the vector of parameters β ∈ RK capture the consumers’ taste for charac-
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teristics xjt and the parameter α > 0 is the consumers’ marginal utility of income.
Then the unobserved product characteristics terms, ξjt, can be written as a function
of the data and parameters θ1 = (α,β) and θ2 to be estimated,

ξjt = σ−1
j (st;θ2) + αpjt − xjtβ, j ∈ J , t = 1, . . . , T. (3)

The product characteristics terms, ξjt, are the structural error terms of the model,
as they are observed by consumers and firms but not by the modeller. Prices are
likely to be endogenous since firms may consider both observed and unobserved
product characteristics when setting prices. Market shares are endogenous by con-
struction since they are defined by the system of Equations (1), where the demand
function of each product depends on the entire vector of endogenous prices and
unobserved product characteristics. Then, following Berry (1994), we can estimate
the demand function σ based on the conditional moment restrictions E [ξjt|zt] = 0

for all j ∈ J and t = 1, . . . , J , provided that there exist appropriate instruments zt

for prices and market shares.
Since the seminal papers by Berry (1994) and Berry et al. (1995), the standard

practice of the demand estimation literature with aggregate data has been to specify
an ARUM or an RCL model and to compute the corresponding demand function,
which, except for the logit and nested logit models, must then be inverted numer-
ically during estimation.5 In this paper, we instead directly specify closed-form
inverse demand functions of the form

σ−1
j (st;θ2) = lnGj (st;θ2) + ct = δjt, j ∈ J , (4)

where the vector function G = (G0, . . . , GJ) is invertible as a function of st ∈
relint(∆), and where ct ∈ R is a market-specific constant that is determined by the
normalization of the vector δt.

Importantly, when Gj is linear in parameters θ2, estimation amounts to a linear
regression. To see this, consider the three-level nested logit model, which partitions

5The logit and nested logit models have inverse demand in closed form.
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the choice set into nests and further partitions nests into subnests. In this model,

lnGj (st;µ1, µ2) =

(
1−

2∑
d=1

µd

)
ln (sjt)+µ1 ln

 ∑
k∈G1(j)

skt

+µ2 ln

 ∑
k∈G2(j)

skt

 ,

where the nesting parameters µ1, µ2 ≥ 0 satisfy
∑2

d=1 µd < 1 and where G1(j) and
G2(j) are the sets of products belonging the same nest and to the same subnest as
product j, respectively.6 The three-level nested logit model corresponds to the logit
when µ1 = 0 and µ2 = 0 and to the two-level nested logit when µ1 = 0 or µ2 = 0.

Assume that the outside good is in a nest by itself, such that lnG0(st;µ1, µ2) =

ln(s0). Then, the three-level nested logit model boils down to the linear regression
model (Verboven, 1996a)

ln

(
sjt
s0t

)
= xjtβ−αpjt+µ1 ln

(
sjt∑

k∈G1(j) skt

)
+µ2 ln

(
sjt∑

k∈G2(j) skt

)
+ξjt (5)

for all products j = 1, . . . , J in each market t = 1, . . . , T , which requires one
instrument for price and two for the endogenous log-share terms for identification.

3 The IPDL Model

The linear structure of the nested logit regression in Equation (5) makes standard
linear instrumental variable regression techniques (e.g. two-stage least squares) eas-
ily applicable and empirical identification clear. Due to its parsimony, it is also able
to handle very large choice sets. However, the nested logit model imposes strong
restrictions on the substitution patterns that can be accommodated. In this section,
we introduce the Inverse Product Differentiation Logit (IPDL) model, which gener-
alizes the inverse demand function of the nested logit model, while maintaining its
desirable features.

6Indeed, setting γ1 = µ1 + µ2 and γ2 = µ1, we recover Equation (10) of Verboven (1996a) and
the model satisfies the constraint 0 ≤ γ2 ≤ γ1 < 1 that makes it consistent with random utility
maximization.
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Setting Suppose that each market exhibits product segmentation alongD discrete
product characteristics, indexed by d. Each characteristic d defines a finite number
of groups of products, such that each product belongs to exactly one group by each
characteristic. The grouping structure is assumed to be exogenous and common
across markets. For example, cars may be grouped by characteristics such as brand,
size and fuel type.

Let θ2 = (µ1, . . . , µD), with
∑D

d=1 µd < 1 and µd ≥ 0, d = 1, . . . , D , and let
Gd (j) be the set of products grouped with product j on characteristic d. The IPDL
model has an inverse demand function of the form of Equation (4), where lnGj is
defined as

lnGj (st;θ2) =

(
1−

D∑
d=1

µd

)
ln (sjt) +

D∑
d=1

µd ln

 ∑
k∈Gd(j)

skt

 . (6)

Two products are of the same type if they belong to the same group for all
characteristics d. We assume that the outside good is the only product of its type,
i.e.

lnG0 (st;θ2) = ln (s0t) . (7)

The IPDL model extends the (inverse demand of the) nested logit model by
allowing arbitrary, non-hierarchical grouping structures, i.e. any partitioning of the
choice set for each characteristic. This extension works in the same way as the
product differentiation logit (PDL) model of Bresnahan et al. (1997). Therefore,
the IPDL model has the nested logit model and the logit model as a special cases:
the logit is obtained when product segmentation does not matter, and the nested
logit model is obtained when the grouping structure is hierarchical. The freedom in
defining grouping structures can also be used to build inverse demand models that
are similar in spirit to GEV models based on grouping, which have proved useful
for demand estimation purposes (Train, 2009, Chap. 4).7

Several remarks are in order. First, the vector function ln G with elements given

7For example, as in Small (1987) and Grigolon (2020), it is possible to define grouping structures
that describe markets where products are naturally ordered.
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by Equation (6) can be shown to be invertible.8 That is, any observed vector of
market shares s is rationalized by a unique vector of product indexes δ ∈ D. Then,
in the IPDL model, the Independence from Irrelevant Alternatives (IIA) property
holds for products of the same type, but does not in general for product of different
types. In practice, this implies that there are as many cross-price elasticities per
product as there are different types. Furthermore, the parametrization of the IPDL
model does not depend on the number of products, but instead on the number of
grouping characteristics. This implies that the IPDL model can handle markets
involving very many products. Lastly, as it it the case for the nested logit model,
the IPDL model can be extended to allow group parameters µd to be group-specific
(see the empirical application of Section 4).

Microfoundation In Section 6, we show that the IPDL model is consistent with
a representative consumer model with taste for variety whose utility function be-
longs to the class of utilities studied by Allen and Rehbeck (2019b), which may be
interpreted as representing the behavior of heterogeneous, utility-maximizing con-
sumers. Specifically, it is consistent with a representative consumer, endowed with
income y, who chooses a vector st ∈ relint(∆) of nonzero market shares in market
t so as to maximize her utility function given by

αy +
∑
j∈J

δjtsjt −

(
1−

D∑
d=1

µd

)∑
j∈J

sjt ln (sjt)−
D∑
d=1

µd

[∑
g∈Gd

sgt ln (sgt)

]
, (8)

where sgt =
∑

k∈g skt, and Gd is the set of groups for characteristic d. The second
term in Equation (8) captures the net utility derived from the consumption of st in
the absence of interaction among products and the remaining terms express taste
for variety. Specifically, the quantity (1 −

∑D
d=1 µd) measures taste for variety

over all products of the choice set; and each parameter µd measures taste for variety
across groups by characteristic d: higher µd means that variety at the level of groups
matters more, meaning that products in the same group by characteristic d are more

8The key assumption that ensures invertibility is that
∑D
d=1 µd < 1. Proposition 1 below es-

tablishes invertibility for the Generalized Logit model introduced in Section 5, which has the IPDL
model as a special case.
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similar (see Verboven, 1996b, for a similar interpretation of the nesting parameter
in the nested logit model).

Complementarity We now consider a simple example which shows how com-
plementarity may arise in the IPDL model due to taste for variety at the group level.
Suppose there are J = 3 products and one outside good. Products are grouped
by two characteristics: the grouping is {1}, {2, 3} for the first characteristic and
{1, 2}, {3} for the second characteristic. This grouping structure induces substi-
tutability between products 1 and 2 as well as between products 2 and 3. How-
ever, depending on parameters, products 1 and 3 may be substitutes or comple-
ments. Complementarity occurs if and only if (1− µ1 − µ2) (s1 + s2) (s2 + s3) −
µ1µ2s0s2 < 0, which simplifies to 4/3 < µ1µ2/(1 − µ1 − µ2) for s0 = 1/2 and
s1 = s2 = s3 = 1/6. In particular, products 1 and 3 are substitutes for µ1 = 1/4

and µ2 = 1/3, but are complements for µ1 = 2/5 and µ2 = 1/2. See Proposition 6
in Appendix A.3 for details.

In the supplement, we provide simulation results investigating the patterns of
substitution of the IPDL model. We find that products of the same type are always
substitutes, while products of different types may be substitutes or complements,
and that closer products into the characteristics space used to form product types
(i.e. higher values of µd and/or whether products belong to the same groups or not)
have higher cross-price elasticities.

As shown by Cardell (1997) and further studied by Galichon (2021), the (two-
level) nested logit model is an RCL model for which the dummy variables that form
the nesting structure receive a random coefficient with a certain distribution. This
observation motivates the question of whether an IPDL model is also equivalent to
some RCL model. We can immediately rule out IPDL models exhibiting comple-
mentarity, since products can only be substitutes in the RCL model. Furthermore,
there are IPDL models that violate the sign condition that holds for the higher order
mixed partial derivatives of the demand function of the RCL model. So we can con-
clude that the IPDL model, even without complementarity, accommodates behavior
that cannot be accommodated by any RCL model.
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Identification and Estimation Combining Equations (6) and (7) and using that
δ0t = 0 for all t = 1, . . . , T , the IPDL model boils down to the linear regression of
market shares on product characteristics and log-share terms

ln

(
sjt
s0t

)
= xjtβ − αpjt +

D∑
d=1

µd ln

(
sjt∑

k∈Gd(j) skt

)
+ ξjt, (9)

for all products j = 1, . . . , J in each market t = 1, . . . , T .
Equation (9) has the same form as the logit and nested logit equations, except

for the log-share terms. Following the literature, we assume that product character-
istics xjt are exogenous and that prices and log-share terms are endogenous. As a
consequence, the IPDL model reduces to a linear IV regression, where identification
requires at least one instrument for price and one for each of the log-share terms.
As it is well known, instruments for prices include cost shifters and markup shifters
(see e.g. Berry and Haile, 2014, 2016). In particular, the second set of instruments
include the BLP instruments (Berry et al., 1995; Gandhi and Houde, 2020). Fol-
lowing Verboven (1996a) and Bresnahan et al. (1997), for the IPDL model, these
instruments include, for each grouping characteristic, the sums of characteristics of
other products of the same group or the corresponding differences in those char-
acteristics. The same instruments can also be computed for products of the same
type.

Furthermore, identification of group parameters µd requires exogenous varia-
tion in the relative share sjt/

∑
k∈Gd(j) skt. Intuitively, since they drive substitution

patterns among products, identification requires instruments that provide exoge-
nous variation in the choice set, including changes in prices. Both cost shifters and
markup shifters are therefore good candidates for instruments for log-share terms.

Comparison to Existing Models We now consider three experiments that com-
pare the IPDL model to three existing models, the three-level nested logit model,
the PDL model of Bresnahan et al. (1997), and the RCL model. For each experi-
ment, one dataset consists of T = 200 markets with J = 45 products, where mar-
kets exhibit product segmentation along two characteristics that form four types of
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products.9 In each experiment, we generate a fully structural model of demand and
supply, where the supply side is a static price competition model with multi-product
firms. This allows us to compare models both in terms of estimated elasticities and
markups. See Appendix B for details.

The IPDL model and the (three-level) nested logit model coincide when the for-
mer has a hierarchical grouping structure; both are estimated by linear instrumental
variable regression. The first experiment assesses the extent to which imposing a
hierarchical grouping structure biases the estimated substitution patterns, when the
true grouping structure is non-hierarchical. We first simulate two IPDL models
with different grouping parameters such that complementarity occurs in the second
model but not in the first. Then, we estimate the two possible nested logit models.
The results presented in Table 1 indicate that the nested logit model leads to bi-
ased estimates of the price elasticities and markups, especially when some products
are complements. It also shows that the nested logit model shrinks negative cross-
price elasticities towards zero and that the hierarchy of nests substantially affects
the estimated substitution patterns.

The PDL model avoids the hierarchical grouping structure of the nested logit
model in a way that is similar to the IPDL model, but requires the BLP method for
estimation. The second experiment assesses the ability of the IPDL model to fit the
elasticities generated by the PDL model and the implied markups. We first simu-
late two PDL models with different grouping parameters ρ1 and ρ2 that control the
substitution between products. Then, we estimate the corresponding IPDL models.
The results presented in Table 2 suggest that the IPDL model is quite well able to
fit the elasticities of the PDL model and the implied markups.

9This approximately corresponds to the amount of data we use in the empirical application.
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Table 1: IPDL MODEL VS. THREE-LEVEL NESTED LOGIT MODEL

IPDL model with µ1 = 0.1 and µ2 = 0.3 IPDL model with µ1 = 0.2 and µ2 = 0.7
Price Elasticities Markup Price Elasticities Markup

Own Type 1 Type 2 Type 3 Type 4 Own Type 1 Type 2 Type 3 Type 4
True IPDL
Type 1 -2.066 0.051 0.023 0.042 0.012 0.565 -6.582 0.339 0.079 0.203 -0.056 0.278
Type 2 -2.062 0.022 0.057 0.010 0.047 0.559 -6.572 0.083 0.383 -0.102 0.250 0.254
Type 3 -2.061 0.040 0.010 0.061 0.029 0.557 -6.505 0.201 0.112 0.452 0.172 0.264
Type 4 -2.072 0.011 0.045 0.028 0.065 0.564 -6.474 -0.055 0.192 0.147 0.478 0.298
Estimated NL: First Hierarchical Structure
Type 1 -2.545 0.046 0.040 0.021 0.023 0.447 -7.826 0.467 0.034 0.019 0.019 0.203
Type 2 -2.548 0.041 0.046 0.021 0.023 0.443 -7.680 0.030 0.654 0.019 0.019 0.195
Type 3 -2.539 0.021 0.020 0.058 0.055 0.443 -7.438 0.014 0.017 0.899 0.044 0.200
Type 4 -2.553 0.021 0.020 0.050 0.062 0.445 -7.610 0.014 0.017 0.043 0.722 0.226
Estimated NL: Second Hierarchical Structure
Type 1 -2.519 0.062 0.019 0.044 0.021 0.459 -7.708 0.412 0.008 0.214 0.010 0.227
Type 2 -2.508 0.019 0.075 0.020 0.048 0.455 -7.653 0.008 0.508 0.009 0.252 0.208
Type 3 -2.501 0.041 0.019 0.085 0.021 0.453 -7.510 0.188 0.008 0.653 0.010 0.212
Type 4 -2.523 0.019 0.045 0.020 0.082 0.459 -7.558 0.008 0.190 0.009 0.600 0.242
Notes: The top panels give the true demand elasticities; and the middle and bottom panels give the estimated demand elastic-
ities. In each panel, entries j1 involve averages of own-price elasticities of demand of products of type j; and entries i, j + 1
involve averages of cross elasticities of products of type iwith respect to the price of products of type j. Each average elasticity
represents the average elasticity across markets and products of the given types.

Table 2: IPDL MODEL VS. PDL MODEL

True PDL Estimated IPDL
Price Elasticities Markup Price Elasticities Markup

Own Type 1 Type 2 Type 3 Type 4 Own Type 1 Type 2 Type 3 Type 4
Dataset is PDL model with ρ1 = ρ2 = 0.5
Type 1 -4.089 0.115 0.079 0.068 0.032 0.297 -4.436 0.123 0.085 0.073 0.027 0.272
Type 2 -4.069 0.070 0.143 0.029 0.096 0.293 -4.406 0.076 0.162 0.020 0.100 0.269
Type 3 -4.082 0.066 0.032 0.124 0.086 0.293 -4.425 0.071 0.022 0.137 0.091 0.269
Type 4 -4.084 0.028 0.096 0.079 0.145 0.297 -4.423 0.024 0.010 0.084 0.163 0.274
Dataset is PDL model with ρ1 = 0.9 and ρ2 = 0.5
Type 1 -3.523 0.085 0.087 0.037 0.036 0.341 -3.709 0.079 0.051 0.072 0.042 0.320
Type 2 -3.205 0.076 0.090 0.032 0.043 0.369 -3.664 0.044 0.105 0.037 0.094 0.320
Type 3 -3.662 0.036 0.037 0.097 0.096 0.326 -3.711 0.072 0.042 0.081 0.051 0.317
Type 4 -3.340 0.031 0.043 0.085 0.098 0.359 -3.682 0.037 0.096 0.045 0.103 0.322
Notes: The left panels give the true demand elasticities; and the right panels give the estimated demand elasticities. In each
panel, entries j1 involve averages of own-price elasticities of demand of products of type j; and entries i, j+1 involve averages
of cross elasticities of products of type i with respect to the price of products of type j. Each average elasticity represents the
average elasticity across markets and products of the given types.

Lastly, we compare our approach to the BLP method. In the third experiment,
the demand side is an RCL model with two normally dependent random coefficients
on dummies for groups. Results are presented in Table 3. They show that the
IPDL model fits well the own-price elasticities and the implied markups of the RCL
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model, and that it yields estimated cross-price elasticites that are reasonably close
to the true ones (even though not as close as in the second experiment). The IPDL
model is thus able, at least in this example, to match the rich substitution patterns
of the RCL model while entailing low computational cost.10

Table 3: IPDL MODEL VS. RCL MODEL

True PDL Estimated IPDL
Price Elasticities Markup Price Elasticities Markup

Own Type 1 Type 2 Type 3 Type 4 Own Type 1 Type 2 Type 3 Type 4
Type 1 -4.109 0.129 0.083 0.147 0.101 0.300 -4.220 0.161 0.076 0.104 0.019 0.294
Type 2 -5.116 0.081 0.105 0.102 0.142 0.242 -5.274 0.078 0.121 0.021 0.064 0.236
Type 3 -5.063 0.061 0.043 0.236 0.181 0.245 -5.149 0.250 0.049 0.327 0.126 0.242
Type 4 -6.026 0.036 0.052 0.156 0.242 0.204 -6.209 0.053 0.177 0.146 0.269 0.199
Notes: The left panel gives the true demand elasticities; and the right panel gives the estimated demand elasticities. In each
panel, entries j1 involve averages of own-price elasticities of demand of products of type j; and entries i, j+1 involve averages
of cross elasticities of products of type i with respect to the price of products of type j. Each average elasticity represents the
average elasticity across markets and products of the given types.

Recall that the IPDL model is capable of accommodating complementarity (see
more in the supplement). The reader may wonder whether the estimates from the
IPDL model may indicate complementarity even when the data generating process
does not exhibit complementarity. We verify that this is not the case in the simu-
lation experiments, where we estimate the IPDL model on data generated by the
PDL and the RCL models, which rule out complementarity. We find that the IPDL
model does not falsely indicate complementarity in any of our experiments. This
observation suggests that when we find complementarity between cereals for kids
and cereals for adults in the empirical application, this is not a model artifact.

4 Empirical Application

In this section, we use the IPDL model to study the type of relationships between
products of different market segments, i.e. whether they are substitutes, indepen-
dent or complements. As an illustration, we consider the market for ready-to-eat

10We have also estimated the two possible nested logit models. The parameter estimates do not
satisfy the restrictions that make them consistent with random utility maximization, which indicates
that there is no nested logit model that can rationalize the simulated RCL model.
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(RTE) cereals in Chicago, which has been extensively studied since Nevo (2001),
and investigate the relationship between cereals for kids and cereals for adults.

4.1 Data

Data Sources We use data from the Dominick’s Dataset that are made publicly
available by the James M. Kilts Center, University of Chicago Booth School of
Business. This is weekly store-level scanner data, comprising information on 30
categories of packaged products at the UPC level for all Dominick’s Finer Foods
chain stores in the Chicago metropolitan area over the period 1989-1997. The data
are supplemented by store-specific information, including average household size
and daily store traffic.

For our analysis, we consider the RTE cereals category during the period 1991
–1996. We aggregate data from 62 Dominick’s stores into 3 pricing zones defined
by Dominick’s and we aggregate UPCs into products, where a product is a cereal
(e.g. Special K) associated to its brand (e.g. Kellogg’s).11 We define a market as
a zone-month pair. We select 46 products from 6 national manufacturers (General
Mills, Kellogg’s, Nabisco, Post, Quaker and Ralston), so that they represent around
75% of each manufacturer total sales on the period.12 We define three market seg-
ments, namely Adults, Kids and All-family, according to the classification provided
by the website cerealfacts.org.

Prices are retail prices calculated as the volume-weighted average price per
ounce of the UPCs that form the product, deflated by the monthly Consumer Price
Index for All Urban Consumers in the Chicago-Naperville-Elgin area from the U.S.
Bureau of Labor Statistics. We compute the potential market size by multiplying
the total number of persons in a market by the monthly per capita consumption of
cereals.13 We compute the total volume of a product sold in a market, which we di-

11Only package sizes between 10 and 32 ounces are included.
12The 46 products account for around 60% of the national market (see e.g. Corts, 1996).
13For each store in a month, the total number of persons is computed as the weekly average

number of households who visited that store in that given month, times the average household size.
The weekly average number of households is computed using information on the daily traffic store
and assuming that consumers visit stores twice a week. The total number of persons in a market
is then obtained by summing over stores of a given zone. The monthly per capita consumption of
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vide by the potential market size to obtain the product’s market share. The market
share of the outside good is then the difference between one and the sum of the 46

products’ market shares.
We supplement Dominick’s Dataset with information on the nutrient content

(fiber, sugar and calories) of the cereals from the USDA Nutrient Database for Stan-
dard Reference (release SR11, year 1996), and on the type of grains (rice, wheat,
corn and oats) using manufacturers’ websites and different websites collecting nu-
tritional information. We also use monthly input prices from the websites index-
mundi.com (corn, rice, sugar and wheat) and macrotrends.net (oats) to construct
cost-based instruments.

Descriptive Statistics Table 4 presents descriptive statistics on market shares and
retail prices of cereals, by firm and market segment.

Table 4: SHARES AND PRICES BY FIRM AND MARKET SEGMENT

All-family Adults Kids Total
shares prices shares prices shares prices shares prices

General Mills 3.52 20.03 2.17 20.14 3.35 20.93 9.04 20.39
Kellogg’s 1.37 17.06 6.36 16.79 6.47 18.33 14.2 17.52
Nabisco 0.91 17.70 0.91 17.70
Post 0.90 16.28 2.53 15.90 1.01 21.84 4.44 17.63
Quaker 2.16 15.74 1.27 14.34 3.43 15.22
Ralston 0.79 20.79 0.20 24.75 0.99 21.57
Total 8.74 18.20 13.24 17.08 11.03 19.55 33.01 18.21
Outside good 66.99
Notes: The number of observations is 9,246. Shares and prices refer to average (across markets) market
shares in percent and retail prices (in cents) per ounce, respectively

Kellogg’s and General Mills are the largest two firms, and are active in all mar-
ket segments. Market segments have about equal market shares and cereals for kids
have higher prices on average.

cereals is computed using the information from the USDA’s Economic Research Service that per
capita US consumption of cereals was equal to 13.4 pounds in 1991, 13.9 in 1992, 14.6 in 1993,
14.8 in 1994, 14.6 in 1995 and 14.3 in 1996.
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4.2 Specification and Identification

Specification For the purpose of our empirical analysis, we specify an IPDL
model with three grouping characteristics: i) whether or not cereals are adults-
friendly (A for adults-friendly, NA for non-adults-friendly), ii) whether or not they
are kids-friendly (K for kids-friendly, NK for non-kids-friendly), and iii) which
brand the cereals belong to (G for General Mills,K for Kellogg’s,N for Nabisco, P
for Post,Q for Quaker, andR for Ralston). All-family cereals are both kids-friendly
and adults-friendly, cereals for adults are adults-friendly but not kids-friendly, and
cereals for kids are kids-friendly but not adults-friendly. Cereals for kids contain
more sugar and less fiber than cereals for adults and for all-family; Nabisco offers
cereals with less sugar and less calories, while Quaker and Ralston offer cereals
with less fiber and more calories. Therefore, the grouping characteristics also proxy,
at least partially, for the nutrient content of the cereals.

The corresponding IPDL model is estimated using the linear IV regression

ln

(
sjt
s0t

)
= β0 + xjβ − αpjt + µG1(j) ln

(
sjt∑

k∈G1(j) skt

)
(10)

+ µG2(j) ln

(
sjt∑

k∈G2(j) skt

)
+ µG3(j) ln

(
sjt∑

k∈G3(j) skt

)
+ ξjt,

where G1(j) ∈ {A,NA}, G2(j) ∈ {K,NK} and G3(j) ∈ {G,K,N,P,Q,R} and
where xj are market-invariant product characteristics (fiber, sugar, calories, corn,
oats, rice, wheat). As in Bresnahan et al. (1997), the error term is specified as
ξjt = ξs + ξb + ξm + ξz + ujt, where ξs, ξb, ξm and ξz are fixed effects for segments,
brands, months and zones, respectively and where ujt is the remaining structural
error.

The advantages provided by the three grouping characteristics are therefore
parametrized by the fixed effects ξs and ξb, which measure the extent to which
belonging to a group shifts the demand for the cereal, as well as the parameters for
groups µG1(j), µG2(j), and µG3(j), which measure the extent to which cereals within a
group are protected from substitution from cereals in other groups by each grouping
characteristic.
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We estimate two specifications of the model (10): first, a restricted specification
where parameters for groups are equal across groups for a given grouping charac-
teristic; second, a flexible specification in which they are allowed to vary across
groups. For the sake of parsimony, brands are divided into three groups accord-
ing to their popularity (measured in terms of market shares): General Mills and
Kellogg’s, Post and Nabisco, Quaker and Ralston. We use the two-step efficient
generalized method of moments (GMM) estimator, with instruments described be-
low.

Identification To identify the substitution patterns, we rely on three sets of in-
struments. The first set comprises the cost shifters. We use input prices (sugar,
corn, oats, rice and wheat) multiplied by the corresponding characteristics, which
we interact with firm’s fixed effects to generate instruments that vary by cereals, by
firms and across time.

The second set consists of BLP instruments. We construct several sums of the
differences in sugar: sums over competing cereals belonging to the same group for
each grouping characteristic, the same sums over cereals of the same firm and over
cereals of rival firms, respectively. For the flexible specification, we interact these
instruments with the corresponding groups’ fixed effects.

Lastly, in line with Miller and Weinberg (2017), we use Post’s acquisition of the
Nabisco cereal line that occurred in January 1993 as a markup shifter. To examine
the effects of the Post-Nabisco merger on prices and market shares, we consider the
following regressions

ln(yjt) = ai + biPostMergert + ci(wjt) + φj + φz + φm + εijt,

where yjt ∈ {pjt, sjt} for a product j in market segment i, where PostMergert is
a post-merger indicator, ci controls for firm-specific cost changes through time, wjt

are cost shifters, and φj , φz, φm are fixed effects for products, zones and months, re-
spectively (see, e.g. Björnerstedt and Verboven, 2016; Miller and Weinberg, 2017).

Table 5 presents the results and shows that the Post-Nabisco merger affected
market segments differently. This is not surprising since the merger directly in-

18



volved the segment adults, in which both Post and Nabisco were present before
the merger, but not (at least not directly) the segments kids and all-family in which
only Nabisco was active. The result that cereals for kids experienced a price de-
crease and a demand increase after the merger is less obvious. However, these
results show that the merger can be used as an instrument for prices and log-shares.
In practice, we include a post-merger indicator which we interact with fixed effects
for firms and for segments, respectively, and we interact the cost-based instruments
with the post-merger indicator.

Table 5: PRICE AND MARKET SHARE EFFECTS OF THE MERGER

ln(pjt) ln(sjt)
Fixed Effects for Segments (ai)

Adults -1.514 (0.0443) -4.666 (0.234)
Kids -1.911 (0.0657) -4.820 (0.322)
All-family -2.037 (0.0735) -5.653 (0.225)

Interaction Segment – Post-Merger Indicator (bi)
Adults × PostMerger 0.0138 (0.00398) -0.117 (0.0309)
Kids × PostMerger -0.0285 (0.00659) 0.0877 (0.0381)
All-family × PostMerger 0.0108 (0.00746) -0.00110 (0.0340)

RMSE 0.127 0.468
Notes: The number of observations is 9,246. Standard errors are clustered at the market
(zones-month) level and shown in parentheses. Fixed effects for products, months, and
zones, as well as controls for costs are included.

A potential problem is weak identification, which occurs when instruments are
only weakly correlated with the endogenous variables. In both specifications, the
Sanderson and Windmeijer (2016)’s F-statistics to test whether each endogenous
variable is weakly identified are far above 10, the rule-of-thumb usually used for
linear IV regressions, thereby suggesting that instruments are not weak.

4.3 Results

Demand Parameters Table 6 presents the parameter estimates from the IPDL
model. Columns (1) and (2) provides the results for the restricted and the flexible
specifications, respectively. As expected, the estimated parameter on the negative
of price (α) is significantly positive for both specifications. The estimated param-
eters for groups have magnitude and sign that satisfy the assumptions of the IPDL
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model.14

The flexible specification nests the restricted specification; the restriction can
then be tested by a simple Wald test. The test rejects the restricted specification at
any conventional level of significance, indicating that the grouping parameters are
statistically different from each other in a given dimension.

In both specifications, the estimated fixed effects suggest that the brand reputa-
tion of the cereals confers a significant advantage to products from General Mills
and Kellogg’s and that cereals for family have a significant advantage.

Furthermore, looking at the estimated grouping parameters, we find that the
market segments confer more protection from substitution than brand reputation
does (cereals of the same market segment are more protected from cereals from dif-
ferent market segments than cereals of the same brand are from cereals of different
brands). Overall, this implies that cereals of the same type are closer substitutes.

Price Elasticities Table 7 presents the estimated own- and cross-price elasticities
of demand for both specifications, averaged across markets (month-zone pairs) and
product types (all-family, adults, kids). We obtain own-price elasticities in line with
the literature (see e.g. Nevo, 2001).

Both specifications give qualitatively similar results regarding the relationships
between cereals of different market segments: all-family cereals are more substi-
tutable with cereals for adults than with cereals for kids; and cereals for kids and
for adults are complements.

To verify that complementarity is not a model artifact, we compute the price
elasticities using different values of the grouping parameters from the estimated
values. We find that parameter values exist for the model structure does not impose
complementarity.

We also compute markups assuming a static oligopolistic price competition be-
tween the firms. We find, for General Mills, Kellogg’s, Post and Nabisco in 1994,
that the average combined retailer-manufacturer markup is equal to 42% and 32%

for the restricted and the flexible specifications, respectively. These results are in

14For the restricted specification, µ1 ≥ 0, µ2 ≥ 0 , µ3 ≥ 0 and 1− µ1 − µ2 − µ3 > 0; similarly,
for the flexible specification. No constraints were imposed on the parameters during the estimation.
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Table 6: PARAMETER ESTIMATES OF DEMAND

(1) (2)
Restricted Flexible

Constant (β0) -0.776 (0.0398) -0.776 (0.0413)
Price (−α) -1.047 (0.131) -1.464 (0.173)

Fixed Effects for Segments
Kids -0.503 (0.0247) -0.457 (0.0211)
All-family 0.0486 (0.00621) 0.165 (0.0147)

Fixed Effects for Brands
Kellogg’s 0.00754 (0.00380) 0.00939 (0.00449)
Nabisco -0.159 (0.0276) -0.241 (0.0339)
Post -0.0880 (0.0135) -0.163 (0.0213)
Quaker -0.101 (0.0156) -0.118 (0.0158)
Ralston -0.157 (0.0280) -0.183 (0.0290)

Grouping parameters for adults-friendly (µ1)
A 0.806 (0.0234) 0.774 (0.0201)
NA same 0.742 (0.0240)

Grouping parameters for kids-friendly (µ2)
K 0.106 (0.0130) 0.139 (0.0122)
NK same 0.101 (0.0114)

Grouping parameters for brands (µ3)
G – K 0.0511 (0.0104) 0.0663 (0.0114)
N – P same 0.0446 (0.0098)
Q – R same 0.0713 (0.0123)

Notes: The number of observations is 9,246. Standard errors are clustered at the market
(zones-month) level and shown in parentheses. Fixed effects for products, months, and zones,
as well as characteristics (fiber, sugar, calories, corn, oats, rice and wheat) are included.

line with Corts (1996) who finds an average markup of 37% using accounting data.

5 The Generalized Logit Model

Having shown that the IPDL model is econometrically convenient, we now show
that it is consistent with utility maximization. For this purpose, we introduce the
Generalized Logit (GL) model, which has the IPDL model as a special case. Then
in Section 6, we establish the GL model, and thus the IPDL model, as a utility-
maximizing model and relate it to the representative consumer model and to the
additive random utility model. Proofs for this section are provided in Appendix
A.4. To ease exposition, we omit notation for parameters θ2 and markets t.
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Table 7: SUBSTITUTION PATTERNS

Cross elasticities
Own elasticity All-family Adults Kids

Restricted Model
All-family -4.3354 0.2595 0.0474 0.0089

[-4.4437 ; -4.2271] [0.2415 ; 0.2775] [0.0399 ; 0.0550] [0.0064 ; 0.0113]
Adults -4.3412 0.0466 0.1789 -0.0012

[-4.4512 ; -4.2312] [0.0391 ; 0.0541] [0.1707 ; 0.1870] [-0.0016 ; -0.0008]
Kids -4.9885 0.0043 -0.0005 0.3180

[-5.1138 ; -4.8632] [0.0029 ; 0.0057] [-0.0008 ; -0.0002] [0.3079 ; 0.3282]
Flexible Model
All-family -8.8607 0.6009 0.0665 0.0169

[-9.4625 ; -8.2590] [0.5417 ; 0.6602] [0.0557 ; 0.0773] [0.0127 ; 0.0211]
Adults -3.5719 0.0567 0.1305 -0.0014

[-3.6731 ; -3.4707] [0.0471 ; 0.0663] [0.1236 ; 0.1374] [-0.0019 ; -0.0010]
Kids -4.2946 0.0075 -0.0005 0.2660

[-4.4254 ; -4.1638] [0.0054 ; 0.0095] [-0.0009 ; -0.0001] [0.2542 ; 0.2777]
Notes: This table gives the estimated own- and cross-price elasticities of demands, averaged across markets
(month-zone) and product types (all-family, adults, kids), using a parametric bootstrap. We draw repeatedly
from the estimated joint distribution of parameters. For each draw, we compute the average elasticities, thus
generating a bootstrap distribution; 1,500 draws are taken. The middle number is the average over draws; lower
numbers in brackets are the bounds of the 95% confidence interval.

Definition 1. A generalized logit (GL) inverse demand function is a function ln G,
where G : (0,∞)J+1 → (0,∞)J+1 is linearly homogeneous and where the Jaco-
bian JlnG (s) is positive definite and symmetric.

In a GL model, the vector of product indexes is given up to an additive market-
specific constant c ∈ R by the GL inverse demand function, i.e.

lnGj (s) = δj − c, j ∈ J . (11)

This definition implies that the IPDL model is a GL model. In the supplement,
we provide a range of general methods for building other GL inverse demand func-
tions along with illustrative examples. As stated in the following proposition, a GL
inverse demand function is injective and hence invertible on its range.

Proposition 1. A GL inverse demand function is injective on relint(∆). Further-
more, if | ln G(s)| → ∞ whenever s → s0, where s0 is on the boundary of ∆, then
the range of ln G is RJ+1.

Invertibility of the inverse demand function is equivalent to invertibility of the
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demand function itself. The demand function has domain equal to the range of the
inverse demand function. The proposition provides a simple condition that ensures
this range is equal to all of RJ ; this condition is satisfied by the IPDL model.

Consider any vector of market shares s ∈ relint(∆). Then, holding δ0 = 0,
the injectivity of the GL inverse demand function ensures that there exists a unique
vector of indexes δ ∈ D that rationalizes demand, i.e. s = σ (δ).

Let H = G−1 denote the inverse of G. Inverting Equation (11) and using that
the demand vector sums to one together with the linear homogeneity of G leads to
the demand function. Then the consumer surplus function can be computed using
Roy’s identity.

Proposition 2. Let ln G be a GL inverse demand function. Then, the corresponding
demand function is

sj = σj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J , (12)

and the consumer surplus is given, up to an additive constant, by the convex function

CS (δ) = ln

(∑
k∈J

Hk

(
eδ
))

.

Expression (12) extends the logit demand function in a non-trivial way through
the presence of the function H. The consumer surplus is simply the logarithm of
the denominator of the demand in Equation (12), just as for the logit model.15

Furthermore, using that the demand vector sums to one, we obtain that the
market-specific constant in (11) is equal to the consumer surplus c = CS (δ). Thus,
differentiating Equation (11) with respect to δ and rearranging terms leads to the
matrix of demand derivatives ∂σj(δ)/∂δi.

Proposition 3. Let ln G be a GL inverse demand function and let s = σ (δ). Then
the matrix of demand derivatives is Jσ (δ) = [JlnG (s)]−1 − ssᵀ.

15Nocke and Schutz (2018) employ a similar form, but impose Hj(e
δ) = Hj(e

δj ), which implies
the restrictive IIA property. At the same time, in contrast to the present paper, they do not assume
unit-demand.
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In the absence of income effects, the matrix of demand derivatives is the Slutsky
matrix. It is symmetric and positive semi-definite, which implies that GL demand
functions are non-decreasing in their own index δj , ∂σj(δ)/∂δj ≥ 0.

The GL model accommodates substitution patterns that go beyond those of stan-
dard ARUM. In particular, it allows for complementarity in demand: this is for ex-
ample the case of the IPDL model. Our invertibility result in Proposition 1 therefore
extends Berry (1994)’s invertibility result, which restricts the products to be strict
substitutes. Proposition 1 also supplements Berry et al. (2013), who show invert-
ibility for demand functions that satisfy their “connected substitutes” conditions,
which, in turn, rules out complementarity when the demand is unitary.16

6 Relationships between Models

This section puts the GL and the IPDL models into perspective by showing how
they relate to the representative consumer (RC) model and to the additive random
utility model (ARUM).17

6.1 Representative Consumer Model

Consider a representative consumer facing the choice set of differentiated products,
J , and a homogeneous numéraire good, with demands for the differentiated prod-
ucts summing to one. Let pj and vj be the price and the quality of product j ∈ J ,
respectively. The price of the numéraire good is normalized to 1 and the represen-
tative consumer’s income y is sufficiently high (y > maxj∈J pj) to guarantee that
consumption of the numéraire good is positive.

16The connected substitutes structure requires two conditions: (i) products are weak gross substi-
tutes, i.e. everything else equal, an increase in δi weakly decreases demand σj for all other products;
and (ii) the “connected strict substitution” condition holds, i.e. there is sufficient strict substitution
between products to treat them in one demand system. In contrast to ours, Berry et al. (2013)’s
result does not require that the demand function σ is differentiable. Demand systems with some
form of complementarity can be covered by Berry et al. (2013)’s result in cases where a suitable
transformation of demand can be found such that the transformed demand satisfies their conditions.
Our result allows complementarity without requiring such a transformation to be found.

17See Anderson et al. (1992) of a comprehensive treatment of the ARUM and RC model
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In this subsection, we show that the GL inverse demand function ln G is consis-
tent with a representative consumer who chooses a vector s ∈ ∆ of market shares
of the differentiated products and a quantity z ≥ 0 of the numéraire good, so as to
maximize her direct utility function

αz +
∑
j∈J

vjsj −
∑
j∈J

sj lnGj (s) (13)

subject to the budget constraint and the constraint that the demand vector sums to
one, ∑

j∈J

pjsj + z ≤ y and
∑
j∈J

sj = 1, (14)

where α > 0 is the marginal utility of income. The first two terms of the direct
utility (13) describe the utility that the representative consumer derives from the
consumption (s, z) of the differentiated products and the numéraire in the absence
of interaction among them. The third term is a strictly concave function of s that
expresses her taste for variety (see Lemma 5 in Appendix A.5.1).

Let δj = vj − αpj be the net utility that the consumer derives from consuming
one unit of product j ∈ J . The utility maximization program (13) – (14) leads
to first-order conditions for interior solution, which have the form of Equation (11)
defining the GL inverse demand function. We state this observation as a proposition
and relegate its proof to Appendix A.5.1.

Proposition 4. The GL model (11) is consistent with a representative consumer
who maximizes utility (13) subject to constraints (14).

Anderson et al. (1988) and Verboven (1996b) show that the logit and the nested
logit models are consistent with a utility-maximizing representative consumer en-
dowed with a direct utility function of the form of Equation (13). Proposition 4
extends these results to the GL model.

Furthermore, as shown by Allen and Rehbeck (2019b), utility (13) can be ob-
tained, by aggregating across heterogeneous and utility-maximizing consumers,
from the class of latent utility models with additively separable unobservable het-
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erogeneity called perturbed utility (PU).18 This implies that any GL model embod-
ies consumer heterogeneity and can be rationalized by a PU model. However, the
converse does not hold. For example, when taste for variety is modelled by the
strictly concave function

∑
j∈J ln(sj), the corresponding candidate GL inverse de-

mand function is lnGj (s) = 1
sj

ln (sj), which is not linearly homogeneous.

6.2 Additive Random Utility Model

We now turn to the additive random utility model. A population of consumers face
the choice set of differentiated products, J , and associate a deterministic utility
component δj = vj − αpj to each product j ∈ J . Each individual consumer
chooses the product that maximizes her indirect utility given by

uj = δj + εj, j ∈ J , (15)

where the vector of random utility components ε = (ε0, . . . , εJ) follows a joint dis-
tribution with finite means that is absolutely continuous, fully supported on RJ+1

and independent of δ. These assumptions are standard in the discrete choice litera-
ture. They imply that utility ties occur with probability 0, that the choice probabili-
ties are all everywhere positive, and that random coefficients are ruled out. Specific
distributional assumptions for ε lead to specific models such as the logit, the nested
logit or the probit models.19

The probability that a consumer chooses product j is

Pj (δ) = Pr (uj ≥ ui, ∀i 6= j) , j ∈ J .
18See Hofbauer and Sandholm (2002), McFadden and Fosgerau (2012) and Fudenberg et al.

(2015) for more details on PU models, which have been used to model optimization with effort
(Mattsson and Weibull, 2002), stochastic choices (Swait and Marley, 2013; Fudenberg et al., 2015),
and rational inattention (Matejka and McKay, 2015; Fosgerau et al., 2020). Allen and Rehbeck
(2019a) show that some PU models allow for complementarity.

19Note that income does not enter utility (15), which means that there is no income effect. This is
equivalent to the case in which income enters linearly. The deterministic utilities, δj , are common
across all consumers, which rules out heterogeneity in preferences apart from the random utility
components, εj .
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Let CS : RJ+1 → R be the consumer surplus, i.e. the expected maximum utility

CS (δ) = E
(

max
j∈J

uj

)
.

By the Williams-Daly-Zachary theorem (McFadden, 1981), the conditional choice
probabilities are equal to the derivatives of the consumer surplus, i.e. Pj (δ) =

∂CS (δ) /∂δj . Define a function H =
(
H0, . . . , HJ

)
, with Hj : (0,∞)J+1 →

(0,∞) as the derivative of the exponentiated surplus with respect to its jth compo-
nent, i.e.

Hj

(
eδ
)

=
∂eCS(δ)

∂δj
= Pj (δ) eCS(δ), j ∈ J .

Summing over j ∈ J and using that probabilities sum to one, we can write the
choice probabilities implied by the ARUM and the corresponding consumer surplus
in terms of H as

Pj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J , (16)

and

CS (δ) = ln

(∑
k∈J

Hk

(
eδ
))

.

Lemma 7 in Appendix A.5.2 shows that H is invertible, with inverse G = H
−1

,
and that ln G is a GL inverse demand function. Then we can invert Equations (16)
to obtain the inverse demand functions implied by the ARUM, which coincide with
the GL inverse demand functions (11) when G = G, that is, lnGj (s) + c = δj with
c = CS (δ), for all j ∈ J .

Products are always substitutes in an ARUM. By contrast, as the IPDL model, a
GL model may allow for complementarity and cannot therefore be rationalized by
any ARUM. We summarize the results as follows.

Proposition 5. The choice probabilities (16) implied by the ARUM coincide with
the GL inverse demand functions (12) when G = G = H−1 = H−1

.
Furthermore, any ARUM is consistent with some GL model. However, the

converse does not hold: some GL models are not consistent with any ARUM.

Proposition 5 shows that the choice probabilities generated by any ARUM can
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be derived from some GL model. As any GL model is an RC model, but not vice
versa, we have therefore strengthened Hofbauer and Sandholm (2002)’s result that
the demand functions generated by any ARUM can be derived from some RC mod-
els by showing that the GL structure is sufficient to recover any ARUM.

Figure 1: RELATIONSHIPS BETWEEN RC, ARUM AND GL MODELS

Overall, as illustrated in Figure 1, the class of GL models is strictly larger than
the class of ARUM, but strictly smaller than the class of RC models.

7 Conclusion

This paper has introduced the IPDL model, which is a structural inverse demand
model for differentiated products that captures market segmentation according to
several product characteristics. The IPDL model generalizes the nested logit model
by allowing arbitrary, non-hierarchical grouping structures, thus accommodating
richer substitution patterns, which may include complementarity. Like the nested
logit model, it can be estimated by linear instrumental variable regression using
aggregate data on market shares, prices, and product characteristics, and it is con-
sistent with a model of heterogeneous, utility-maximizing consumers. Thus, the
IPDL model can be used for understanding consumer behaviour, and in turn, for
analysing a range of economic questions, including market power, product entry,
and regulatory changes in taxes and trade policy.20

20The supplement to this paper provides general constructions that can be exploited for building
models with structures that are tailored to specific applications.
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We have introduced the GL model and shown that any additive random utility
model, without income effect and without heterogeneity in preferences apart from
the random utility term, is a GL model. We have also shown that the GL model is
consistent with the model of utility-maximizing, heterogeneous consumers of Allen
and Rehbeck (2019b), which admits a representative consumer representation.

Going forward, there are a number of items on the research agenda developing
the IPDL (and GL) models further. First, we could allow for income effects and for
unobserved heterogeneity in preferences through random coefficients, in analogy
with what has been done with the logit and nested logit models. Second, the IPDL
model comprises parameters that control the relative importance of the different
groups in determining demand. Still, the grouping structure must be defined by the
researcher. Hortacsu et al. (2020) propose a lasso-type estimator for IPDL mod-
els that include all possible or a very large number of groups, thereby estimating
the grouping structure that best fits the data. Third, this paper focuses on demand
estimation with aggregate data; a natural next step would be to develop methods
of estimation for the IPDL model using individual-level data. Finally, it would be
useful to develop dynamic discrete choice (Rust, 1987) versions of the IPDL (and
GL) models for settings in which forward-looking behavior is important.

Appendix

A Proofs and Additional Results

A.1 Mathematical Notation

We use italics for scalar variables and real-valued functions, boldface for vectors,
matrices and vector-valued functions, and calligraphic for sets. By default, vectors
are column vectors: s = (s0, . . . , sJ)ᵀ ∈ RJ+1.

∆ ⊂ RJ+1 is the unit simplex : ∆ =
{

s ∈ [0,∞)J+1 :
∑

j∈J sj = 1
}

, and

relint(∆) =
{

s ∈ (0,∞)J+1 :
∑

j∈J sj = 1
}

is its relative interior.
Let G = (G0, . . . , GJ) : RJ+1 → RJ+1 be a vector function composed of
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functions Gj : RJ+1 → R. Its Jacobian matrix JG (s) at s has entries ij given by
∂Gi(s)
∂sj

.
A univariate function R → R applied to a vector is a coordinate-wise applica-

tion of the function, e.g. ln (s) = (ln (s0) , . . . , ln (sJ)). 1 = (1, . . . , 1)ᵀ ∈ RJ+1 is
a vector consisting of ones and I ∈ R(J+1)×(J+1) denotes the identity matrix.

A.2 Preliminary Results

This section states some preliminary mathematical results used in the proofs below.

Lemma 1 (Euler equation). Suppose that φ : (0,∞)J+1 → R is linearly homoge-
neous. Then φ (s) =

∑J
i=0

∂φ(s)
∂si

si for all s ∈ (0,∞)J+1.

Definition 2. A matrix A ∈ R(J+1)×(J+1) is positive quasi-definite if its symmetric
part, defined by 1

2
(A + Aᵀ), is positive definite.

It follows that a symmetric and positive definite matrix is positive quasi-definite.

Lemma 2 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F :

Θ → RJ+1, where Θ is a convex region (either closed or non-closed) of RJ+1, has
a Jacobian matrix that is everywhere quasi-definite in Θ, then F is injective on Θ.

Lemma 3 (Simon and Blume, 1994, Theorem 14.4). Let F : RJ+1 → RJ+1 and
G : RJ+1 → RJ+1 be continuously differentiable functions. Let y ∈ RJ+1 and
x = G (y) ∈ RJ+1. Then, the composite function C = F ◦G : RJ+1 → RJ+1 has
a Jacobian matrix JC (y) given by JC (y) = JF◦G (y) = JF (x) JG (y).

A.3 Properties of the IPDL Model

Recall that Gd(j) is the set of products that are grouped with product j by charac-
teristic d and let sGd(j) =

∑
k∈Gd(j) sk denote the market share of group Gd (j).

Proposition 6. The IPDL model has the following properties.

1. The IIA property holds for products of the same type; but does not hold in
general for products of different types.
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2. The matrix of price derivatives of demand is equal to−α
(
[Jln G(s)]−1 − ssᵀ

)
,

with s = σ(δ) and where Jln G(s) has entries ij given by

∂ lnGi(s)
∂sj

=
1−

∑D
d=1 µd
si

1{i = j}+
D∑
d=1

µd
sGd(i)

1{j ∈ Gd(i)}. (17)

3. Products can be substitutes or complements.

Proof of Proposition 6.
1. Using Equation (6), we obtain for any pair of products j and k that

σj (δ)

σk (δ)
= exp

(
δj − δk

1−
∑D

d=1 µd
+

D∑
d=1

µd

1−
∑D

d=1 µd
ln

(
σGd(k) (δ)

σGd(j) (δ)

))
. (18)

For products j and k of the same type (i.e. with Gd (k) = Gd (j) for all d),
Equation (18) reduces to σj(δ)

σk(δ)
= exp

(
δj−δk

1−
∑D
d=1 µd

)
, which is independent of the

characteristics or existence of all other products, i.e. IIA holds for products of
the same type. When products are of different types, the ratio can depend on the
characteristics of other products, which means that IIA does not hold in general.

2. This follows from Proposition 3 below applied using Equation (6).

3. Suppose there are J = 3 products and one outside good. Products are grouped
by two characteristics: the grouping is {1}, {2, 3} for the first characteristic and
{1, 2}, {3} for the second characteristic.

Let σ(δ) = s. Using Equation (17), we show that ∂σ1(δ)
∂p3

= αs1s3

[
1 + µ1µ2s2

D

]
,

where D = −(1 − µ1 − µ2)(s1 + s2)(s2 + s3) − µ1µ2s2(1 − s0) < 0. Prod-
ucts 1 and 3 are complements if and only if ∂σ1(δ)

∂p3
< 0, that is, if and only if

(1− µ1 − µ2) (s1 + s2) (s2 + s3)− µ1µ2s0s2 > 0.

A.4 Results for Section 5

Proof of Proposition 1. The function ln G is differentiable on the convex region
relint(∆) of RJ+1. In addition, JlnG is positive quasi-definite on relint(∆), since
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by assumption it is symmetric and positive definite on relint(∆). Then ln G is
injective by Lemma 2.

By Definition 1, the function s→
∑

j∈J sj lnGj(s) is strictly convex. Hence for
any δ ∈ RJ+1, the maximization problem sups∈∆{

∑
j∈J sj lnGj(s)} has a unique

solution. The requirement that at least one component of ln G tends to infinity
as s approaches the boundary ensures that the solution is interior. The first-order
conditions are δj = lnGj(s) + 1, j ∈ J .

Lemma 4. Consider the GL model defined by Equation (11).

1. The market-specific constant c is equal to

c = ln

(∑
k∈J

Hk

(
eδ
))

, (19)

where H(eδ) = (H0(eδ), . . . , HJ(eδ)) = G−1(eδ).

2. The Euler-type equation

∑
j∈J

sj
∂ lnGj (s)

∂sk
= 1, k ∈ J , s ∈ relint(∆) (20)

holds and can be written in matrix form as JlnG (s) s = 1 for s ∈ relint(∆).

Proof of Lemma 4.
1. Exponentiating and applying H on both sides of Equation (11) leads to

s = H(eδe−c) = H(eδ)e−c, (21)

where the last equality uses the homogeneity of H. Using that demands sum to 1

leads to Equation (19).

2. Note that

∑
j∈J

sj
∂ lnGj (s)

∂sk
=
∑
j∈J

sj
∂ lnGk (s)

∂sj
=

∑
j∈J sj

∂Gk(s)
∂sj

Gk (s)
=
Gk (s)

Gk (s)
= 1,
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where the first equality relies on the symmetry of the Jacobian of ln G and the third
equality uses the Euler equation for the homogeneous function G.

Proof of Proposition 2. Combine Equations (19) and (21) and use σj (δ) = sj to
obtain Equation (12).

To obtain the expression for the consumer surplus, we verify that Roy’s identity
holds. Set δ = ln G (s). Then (ln G)−1 (δ) = H ◦ exp (δ) = s, and by Lemma 3,

JlnG (s) =
[
J(lnG)−1 (ln G (s))

]−1

= [JH◦exp (δ)]−1 .

By assumption, the Jacobian JlnG(s) is positive definite and symmetric. Then

its inverse JH◦exp (δ) exists and is symmetric as well, i.e.
∂Hi(eδ)
∂δj

=
∂Hj(eδ)
∂δi

.
Then Roy’s identity can be verified via

∂CS
(
eδ
)

∂δi
=

∑
k∈J

∂Hk(eδ)
∂δi∑

j∈J Hj (eδ)
=

∑
k∈J

∂Hi(eδ)
∂δk∑

j∈J Hj (eδ)
,

=

∑
k∈J

∂Hi(eδ)
∂eδk

eδk∑
j∈J Hj (eδ)

=
Hi

(
eδ
)∑

j∈J Hj (eδ)
= σi (δ) ,

where the second equality uses symmetry of JH◦exp (δ) and the fourth equality uses
the Euler equation for the homogeneous function H.

The Hessian of the consumer surplus is Jσ (δ), which by Proposition 3 is posi-
tive semidefinite. Convexity of the consumer surplus then follows.

Proof of Proposition 3. Differentiate δj = lnGj (s) + CS (δ) with respect to
δ, then I = JlnG (s) Jσ (δ) + 1sᵀ, where s = σ (δ). JlnG (s) is invertible, then
Jσ (δ) = [JlnG (s)]−1 [I− 1sᵀ] = [JlnG (s)]−1−[JlnG (s)]−1 1sᵀ. Lastly, use Equa-
tion (20) in matrix form, then [JlnG (s)]−1 1sᵀ = ssᵀ.

As a consequence, Jσ (δ) is symmetric. As JlnG (s) is positive definite, the
square-root matrix [JlnG (s)]1/2 exists and is also positive definite. Then

[JlnG (s)]1/2Jσ (δ) [JlnG (s)]1/2 = [JlnG (s)]−1/2(I− 1sᵀ)[JlnG (s)]1/2,
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is symmetric and idempotent and hence positive semidefinite. Then also Jσ (δ) is
positive semidefinite.

A.5 Results for Section 6

A.5.1 Representative Consumer Model

Lemma 5. Let ln G be a GL inverse demand function. Then the function s →
−sᵀ ln G(s) = −

∑
j∈J sj lnGj (s) is strictly concave on relint(∆).

Proof of Lemma 5. Consider s ∈ relint(∆). By Part 2. of Lemma 4, the Hessian
of −sᵀ ln G(s) is −JlnG (s), which is negative definite by assumption.

Proof of Proposition 4. Consider the representative consumer maximizing utility
(13) subject to constraints (14). The budget constraint is always binding since α > 0

and y > maxj∈J pj . Substituting the budget constraint into the direct utility (13),
the representative consumer then chooses s ∈ ∆ to maximize

u (s) = αy +
∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s)

where δj = vj−αpj . The Lagrangian of the utility maximization program given by

L (s, λ) = u (s) + λ

(
1−

∑
j∈J

sj

)
,

yields
∑

j∈J sj = 1 as well as the first-order conditions

δj − lnGj (s)−
∑
k∈J

sk
∂ lnGk (s)

∂sj
− λ = 0, j ∈ J ,

which, by Part 2. of Lemma 4, simplify to δj− lnGj (s)−1−λ = 0, for all j ∈ J .
The first-order condition for an interior solution has a unique solution, since

the objective is strictly concave by Lemma 5, hence the utility maximizing demand
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exists uniquely. Setting c = 1 +λ, one obtains lnGj (s) + c = δj , which shows that
the representative consumer model leads to the GL inverse demand function.

A.5.2 Additive Random Utility Model

Since shifting all the δj’s by a constant amount c ∈ R shifts the maximum expected
utility CS by the same amount and does not affect choice probabilities P, we may
use the normalization

∑
j∈J δj = 0, i.e. we consider at no loss of generality the

restrictions of G and P to Λ =
{
δ ∈ RJ+1 :

∑
j∈J δj = 0

}
. The following lemma

collects some properties of the expected maximum utility CS.

Lemma 6. The expected maximum utility CS has the following properties.

1. It is twice continuously differentiable, convex and finite everywhere.

2. It satisfies the additivity property CS (δ + c1) = CS (δ) + c for all c ∈ R.

3. Its Hessian is positive definite on Λ.

4. It is given by CS (δ) =
∑

j∈J Pj (δ) δj + E (εj∗|δ), where j∗ is the index of
the chosen product.

Proof of Lemma 6. McFadden (1981) shows Parts 1. and 2. and Hofbauer and
Sandholm (2002) show Part 3. Lastly, Part 4. follows from

CS (δ) =
∑
j∈J

E
(

max
j∈J
{δj + εj} |j∗ = j, δ

)
Pj (δ) ,

=
∑
j∈J

(δj + E (εj∗|j∗ = j, δ)Pj (δ)) =
∑
j∈J

Pj (δ) δj + E (εj∗|δ) ,

where the first equality uses the law of iterated expectations.

Lemma 7. The function H is invertible, and its inverse G = H
−1

is a GL inverse
demand function.

Lemma 7 is proved in Fosgerau et al. (2020) in a very similar setting. The proof
provided here applies to the exact setting of the current paper and has independent
value by being simpler.
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Proof of Lemma 7. We first show that H is injective. Note that H is differen-
tiable. Consider the function δ → H

(
eδ
)
. Its Jacobian is positive definite on Λ

since it has elements ij given by
{
eCS(δ) ∂CS(δ)

∂δi

∂CS(δ)
∂δj

}
+
{
eCS(δ) ∂

2CS(δ)
∂δi∂δj

}
,where

the first term is a positive semi-definite matrix and where, by Part 3 of Lemma 6,
the second term is a positive definite matrix on Λ. As it is also symmetric, it follows
that the Jacobian is positive quasi-definite. Then H is invertible by Lemma 2. By
Norets and Takahashi (2013), the range of H is relint(∆), which then is the domain
of the inverse function H

−1
.

We now show that ln G is a GL inverse demand function. Note that G is lin-
early homogeneous and that, as shown above, the Jacobian of H is symmetric and
positive definite. Then, by Lemma 3, the same is true for the Jacobian of ln G.

B Details on the Simulations Experiments

In each experiment, we simulate a fully structural model of demand and supply,
where the observed characteristic xjt and the cost-shifter zjt are i.i.d. U(0, 1), where
the unobserved product characteristics ξjt and the unobserved cost component ωjt

are such that (ξjt, wjt) ∼ N (0,Σ) with Σ =

[
0.22 0.1

0.1 0.22

]
, and where the grouping

structure is simulated using a binomial distribution and is common across markets.
Prices and market shares are determined endogenously.

Experiment on Three-Level Nested Logit Model vs. IPDL Model We generate
two IPDL models. On the demand side, we set δj = −1 + 2xjt − 0.2pjt + ξjt in
both models; and we set µ1 = 0.1 in the first model and µ2 = 0.3 and µ1 = 0.2 and
µ2 = 0.7 in the second model. On the supply side, we specify the marginal cost
function as cjt = 2+xjt+zjt+wjt. Estimation of the three-level nested logit models
follows Verboven (1996a) and uses Gandhi and Houde (2020)’s instruments.

Experiment on PDL Model vs. IPDL Model The PDL model is a GEV model.
Its demand function is given by σj(δ) = eδj(∂Gj(e

δ)/∂eδj)/G(eδ), whereG(eδ) =

a1

[∑2
g=1

∑
j∈G1g

(
eδj/ρ1

)ρ1]
+a2

[∑2
g=1

∑
j∈G2g

(
eδj/ρ2

)ρ2], with a1 = (1−ρ1)/(2−
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ρ1 − ρ2) and a2 = 1− a1. We generate two PDL models. On the demand side, we
set δj = −1 + 2xjt − 0.5pjt + ξjt in both models, and we set ρ1 = ρ2 = 0.5 in the
first model and ρ1 = 0.9 and ρ2 = 0.5 in the second model. On the supply side, we
specify the marginal cost function as cjt = 2 + xjt + zjt + wjt. Estimation of the
IPDL models follows Section 3.

Experiment on RCL Model vs. IPDL Model On the demand side, we simulate
an RCL model with a mean utility of product j given by δjt = 3 − pjt + d1j +

d2j + xjt + ξjt, where dkj = 1 if product j belongs to group k by characteristic k =

1, 2, zero otherwise. (d1j, d2j) are assumed to have random coefficients that follow

N (0,Σ) with Σ =

[
12 0.25

0.25 1.52

]
. On the supply side, we specify the marginal cost

function as cjt = 2 + +d1j + d2j + xjt + zjt + wjt. Simulation of the RCL model
uses the package pyblp by Conlon and Gortmaker (2020) and estimation of the
IPDL model follows Section 3.
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Abstract

We first present simulations investigating some properties of the Inverse

Product Differentiation Logit (IPDL) model. Next, we provide a range of

general methods for building Generalized Logit (GL) models along with il-

lustrative examples that go beyond the IPDL model.

Notation We use italics for scalar variables and real-valued functions, boldface
for vectors, matrices and vector-valued functions, and calligraphic for sets. By
default, vectors are column vectors: s = (s0, . . . , sJ)ᵀ ∈ RJ+1.

∆J ⊂ RJ+1 is the unit simplex: ∆J =
{
s ∈ [0,∞)J+1 :

∑
j∈J sj = 1

}
, and

int (∆J) =
{
s ∈ (0,∞)J+1 :

∑
j∈J sj = 1

}
is its interior, whereJ = {0, 1, . . . , J}.

Let G = (G0, . . . , GJ)ᵀ : RJ+1 → RJ+1 be a vector function composed of
functions Gj : RJ+1 → R. Its Jacobian matrix JG (s) at s has entries ij given by
∂Gi(s)
∂sj

.
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A univariate function R → R applied to a vector is a coordinate-wise applica-
tion of the function, e.g., ln (s) = (ln (s0) , . . . , ln (sJ)).|s̃| =

∑
j∈J |s̃j| denotes

the 1-norm of vector s̃.

1 Simulation Results for the IPDL Model

Recall that Gd(j) is the set of products that are grouped with product j by charac-
teristic d and let sGd(j) =

∑
k∈Gd(j) sk denote the market share of group Gd (j).

In the IPDL model, the matrix of own- and cross-price derivatives of demand
is equal to −α

(
[JlnG(s)]−1 − ssᵀ

)
, with s = σ(δ) and where JlnG(s) has entries ij

given by

∂ lnGi(s)
∂sj

=
1−

∑D
d=1 µd
si

1{i = j}+
D∑
d=1

µd
sGd(i)

1{j ∈ Gd(i)}. (1)

We cannot obtain closed-form formulae for the entries of the matrix of own-
and cross-price derivatives. We therefore perform simulations to better understand
the substitution patterns of the IPDL model.

Simulated Data We simulate

• A market with 20 products and an outside good;

• 20 different grouping structures along 3 dimensions, and with 3 groups per
dimension. We obtain a grouping structure by simulating a 20 × 3 matrix of
random numbers following a generalized Bernoulli distribution;

• 20 different vectors of grouping parameters µ = (µ0, . . . , µ3). We obtain a
vector of µ by simulating a 4-vector of uniformly distributed random num-
bers, where the first element is µ0, then normalizing so that µ ∈ int (∆3);

• 20 different vectors of market shares s = (s0, . . . , s20). We obtain a vector
of market shares by simulating a 21-vector of uniformly distributed random
numbers, where the first element is s0, then by normalizing the vector of
market shares of products so that s ∈ int (∆20).

2



This normalization ensures that we simulate markets with very low and very
high values for µ0 and s0. Combining the grouping structures, the grouping param-
eters, and the market shares, we form 8, 000 markets. The following table gives
summary statistics on the simulated data.

TABLE 1: SUMMARY STATISTICS ON THE SIMULATED DATA

Variable Mean Min Max
s0 0.5253 0.0064 0.9906
sj 0.0158 3e-06 0.0697
µ0 0.4662 0.0697 0.9532
µ1 0.2014 0.0135 0.8480
µ2 0.1420 0.0175 0.4036
µ3 0.1904 0.0059 0.5212

Grouping Structure Table 2 shows the distribution of the own- and cross-price
derivatives according to the number of common groups.

Own-price elasticities are always negative, while cross-price elasticities can be
either negative (complementarity) or positive (substitutability). Products of the
same type are always substitutes. Products that are very similar (i.e., that are
grouped together by all characteristics but one) are also always substitutes. Prod-
ucts that are very different can be either substitutes or complements. Products are
less likely to be substitutes as they become more different.
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Table 2: DISTRIBUTION OF PRICE DERIVATIVES ACCORDING TO THE NUMBER

OF COMMON GROUPS

Common groups Jσ > 0 Median Min Max Freq.
Own-price derivatives
– 0.00% -0.0222 -0.7781 -3e-06 100.00%
Cross-price derivatives
0 (None) 45.33% -7e-07 -0.1539 0.0251 25.09%
1 90.38% 0.0002 -0.1114 0.2082 43.59%
2 100.00% 0.0006 -1e-09 0.2641 26.47%
3 (All) 100.00% 0.0009 -1e-09 0.3100 4.85%
Total 82.09% 0.0002 -0.1539 0.3100 100.00%
Notes: Column "Jσ > 0" gives the percentage of positive cross-price elasticities
according to the number of common groups (e.g., the row "2" concerns products
that share two groups). Column "Freq." gives the frequencies (in percentage) of
the cross-price elasticities (e.g., 4.85 percent of the cross-price elasticities involve
products of the same type).

.

Grouping Parameters Table 3 shows the distribution of cross-price derivative
according to the proximity of products into the characteristics space used to form
product types, as measured by µjk =

∑3
d=1 µd1 {j ∈ Gd (k)} for two products j

and k.
As the parameter µjk becomes larger, we observe that (i) the derivatives increase

in values, and that (ii) the share of substitutes increases. This is because higher µd
means that products of the same group by characteristic d become more similar.

Table 3: PERCENTAGE OF SUBSTITUTES ACCORDING TO THE VALUE OF µjk

µjk Jσ > 0 Median Min Max
[0, 0.1[ 65.60% 0.0000 -0.1539 0.0286

[0.1, 0.2[ 96.37% 0.0002 -0.0538 0.1462
[0.2, 0.3[ 93.52% 0.0003 -0.1114 0.1670
[0.3, 0.4[ 94.16% 0.0007 -0.0673 0.2082
[0.4, 0.5[ 93.89% 0.0009 -0.0432 0.2049
[0.5, 1[ 100.00% 0.0020 1e-08 0.3100

Summary In the IPDL model,

1. (Grouping structure) Products of the same type are always substitutes. Prod-
ucts of different types may be substitutes or complements, depending on the
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degree of closeness between products as measured by the value of the param-
eters µd and by the closeness of the products into the characteristics space
used to form product types. The closer two products are, the more likely they
are to be substitutes.

2. (Grouping parameters) The size of the cross-derivatives depends on the de-
gree of closeness. The closer two products are, the higher is their cross-
derivative.

2 Construction of GL Models

In this section, we provide general methods for building GL models, along with
illustrative examples. They allow us to obtain alternative models to the logit and
nested logit models that have interesting features: some of them can accommodate
complementarity, others have closed form for both the demand function and its
inverse.

Definition A. A generalized logit (GL) inverse demand function is a function lnG,
where G : (0,∞)J+1 → (0,∞)J+1 is linearly homogeneous and where the Jaco-
bian JlnG (s) is positive definite and symmetric.

Definition B. An almost GL inverse demand is a function that satisfies the require-
ments for being a GL inverse demand, except that the Jacobian JlnG (s) is only
required to be positive semi-definite rather than positive definite.

2.1 General Methods and Illustrative Examples

The first result in this section shows that averaging an almost GL inverse demand
with a GL inverse demand yields a new GL inverse demand.

Proposition A (Averaging). Let Gk, k ∈ {1, . . . , K}, be almost GL inverse de-
mands with at least one being a GL inverse demand. Let (α1, . . . , αK) ∈ int(∆K−1).
Then

lnG (s) =
K∑
k=1

αk lnGk (s)
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is a GL inverse demand.

Proof of Proposition A. The function G is linearly homogeneous since for λ > 0,

G (λs) =
K∏
k=1

Gk (λs)αk =
K∏
k=1

λαkGk (s)αk ,

=

(
K∏
k=1

λαk

)(
K∏
k=1

Gk (s)αk

)
,

=
(
λ
∑K

k=1 αk

)( K∏
k=1

Gk (s)αk

)
= λG (s) ,

where the second equality uses the homogeneity of the functions Gk and the fourth
equality uses the restrictions on parameters

∑K
k=1 αk = 1.

The Jacobian of lnG, given by JlnG =
∑K

k=1 αkJlnGk
, is symmetric as the

linear combination of symmetric matrices, and positive definite as the linear com-
bination of at most K − 1 positive semi-definite matrices and at least one positive
definite matrix.

Proposition A leads to the following corollary.

Corollary A (General grouping ). Let G ⊆ 2J be a finite set of groups with asso-
ciated parameters µg, where µ0j +

∑
{g∈G|j∈g} µg = 1 for all j ∈ J with µg ≥ 0 for

all g ∈ G and µ0j > 0 for all j ∈ J . Let lnG = (lnG0, . . . , lnGJ) be given by

lnGj (s) = µ0j ln (sj) +
∑

{g∈G|j∈g}

µg ln

(∑
i∈g

si

)
.

Then lnG is a GL inverse demand.

Proof of Corollary A. Let T 0
j (s) = sj and for each g ∈ G, Tg = (T g1 , . . . , T

g
J )

with T gj (s) =
(∑

i∈g si

)1{j∈g}
. The Jacobian of lnTg has elements jk given by

1{j∈g}1{k∈g}∑
i∈g si

, and thus JlnTg =
1g1

ᵀ
g∑

i∈g si
where 1g = (1 {1 ∈ g} , . . . ,1 {J ∈ g})ᵀ.

Each Tg is an almost GL inverse demand while T0 is the logit inverse demand.
Lastly,

∑
{g∈G|j∈g} µg +µ0j = 1. Then the conditions for application of Proposition

A are fulfilled.
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The grouping structure in Corollary A is arbitrary and therefore allows the
grouping structure that defines the IPDL model. The presence of the inverse logit
demand, due to µ0 > 0, ensures that the Jacobian JlnG(s) is always positive definite
and hence that the inverse demand is indeed invertible.

If the outside good 0 belongs only to one group and is the only member of that
group, then lnG0 (s) = ln(s0) = δ0 + c. Setting δ0 = 0 and assuming a linear
index, the model of Corollary A boils down to the linear regression model

ln

(
sj
s0

)
= xjβ − αpj +

∑
g∈G(j)

µg ln

(∑
k∈g

sk

)
+ ξj, j = 1, . . . , J.

The following proposition shows how a GL inverse demand can be transformed
into another GL inverse demand by application of a location shift and a matrix with
non-negative elements that sum to one across rows and columns. Let unnormalized
demands s̃ be demands obtained before normalizing their sum to one, i.e., s = s̃/|̃s|.

Proposition B (Transformation). Let T be a GL inverse demand and m ∈ RJ+1

be a location shift vector. Let A ∈ R(J+1)×(J+1) be an invertible matrix such that
aij ≥ 0 and

∑
i∈J aij =

∑
j∈J aij = 1. Then the function lnG given by

lnG(s) = Aᵀ [ln (T (As))] + m (2)

is a GL inverse demand, and the corresponding unnormalized demands are given
by

s̃ = A−1T−1
(
exp

[
(Aᵀ)−1 (δ −m)

])
. (3)

Proof of Proposition B. The function G defined by Equation (2) is linearly homo-
geneous since for λ > 0,

G (λs) = exp (Aᵀ lnT (A (λs)) + m) ,

= exp (Aᵀ lnλ+ Aᵀ lnT (As) + m) ,

= exp (lnλ+ Aᵀ lnT (As) + m) = λG (s) ,

where the second equality uses the homogeneity of T, and the third equality uses
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the feature that columns of A sum to 1.
The Jacobian of lnG is JlnG(s) = AᵀJlnT(s)A, which is symmetric and posi-

tive definite. Unnormalized demands (3) follow from solving lnG (̃s) = δ.

Proposition B provides models where both demand and inverse demand have
closed form, as it is the case of the logit and nested logit models. We illustrate this
proposition with a GL inverse demand that allows for complementarity.

Example A. Let J + 1 = 3, m = 0, T (s) = s, and

A =

 p 1− p 0

1− p p 0

0 0 1

 ,

with p < 0.5. Then we obtain that

s̃ = A−1
(
exp

[
(Aᵀ)−1 δ

])
=


p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2 − 1−p

2p−1e
p

2p−1 δ2−
1−p
2p−1 δ1

p
2p−1e

p
2p−1 δ2−

1−p
2p−1 δ1 − 1−p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2

eδ3

 ,

so that

s3 = σ3 (δ) =
eδ3

e
p

2p−1 δ1−
1−p
2p−1 δ2 + e

p
2p−1 δ2−

1−p
2p−1 δ1 + eδ3

,

and ∂σ3(δ)
∂δ1

> 0 if and only if δ2 − δ1 > (2p− 1) ln
(

1−p
p

)
.

2.2 Zero Demands

The constructions above rule out zero demands (this is also the case of the models
discussed in the main text). The following proposition shows how we can build
models that allow zero demands by slightly modifying Proposition A and applying
it to functions G defined on [0,∞)J+1 instead of just (0,∞)J+1.

Proposition C (Invertible grouping). Let G = {g0, . . . , gJ} be a finite set of J + 1

groups (i.e., the number of groups is equal to the number of products). Let µg > 0,

8



for all g ∈ G, be the associated parameters, where
∑
{g∈G|j∈g} µg = 1 for all j ∈ J .

Let G = (G0, . . . , GJ) : [0,∞)J+1 → (0,∞)J+1 be given by

lnGj (s) =
∑

{g∈G|j∈g}

µg ln

(∑
i∈g

si

)
. (4)

Let W = diag (µg0 , . . . , µgJ ) and let M ∈ R(J+1)×(J+1) with entries Mjk =

1{j∈gk} (where rows correspond to products and columns to groups). If M is in-
vertible, then lnG has all the properties of a GL inverse demand, except that it is
defined on ∆J , and the unnormalized demands satisfy

δ = lnG (̃s)⇔ s̃ = (Mᵀ)−1 exp
(
W−1M−1δ

)
.

Proof of Proposition C. Following the proof of Proposition A, the function G

given by Equation (4) clearly has all the properties of an almost GL inverse de-
mand. Thus, it remains to show that the Jacobian of lnG is positive definite if M
is invertible.

Observe that

lnGj (s) =
∑
k∈J

µgk1 {j ∈ gk} ln

(∑
i∈gk

si

)

=
∑
k∈J

µgk1 {j ∈ gk} ln

(∑
i∈J

1 {i ∈ gk} si

)
,

and, in turn, that

∂ lnGj (s)

∂sl
=
∑
k∈J

µgk
1 {j ∈ gk}1 {l ∈ gk}∑

i∈gk si
,

which can be expressed in matrix form as

JlnG (s) = MVMᵀ,

with V = diag
(

µg0∑
i∈g0

si
, . . . ,

µgJ∑
i∈gJ

si

)
. This is positive definite since all µg are
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strictly positive and M is invertible.
Lastly, with M invertible, unnormalized demands solve the equation lnG (s̃) =

MW ln (Mᵀs̃) = δ and are given by s̃ = (Mᵀ)−1 exp (W−1M−1δ).

As it is illustrated in the following example and as it is the case in ARUM
where error terms have bounded support, Proposition C allows for zero demands
when there is no group containing only one product. Note that this proposition also
allows to build models with closed form for both the demands and their inverses.

Example B. Define groups from the symmetric matrix M with entries Mij =

1{i 6=j}, so that each product belongs to J + 1 groups. Its inverse, M−1, has en-
tries ij equal to 1

J+1
− 1{i=j}.

Let µg = 1/(J + 1) for each group g = 0, . . . , J . Then the unnormalized
demands are given by s̃ = (M)−1 exp [(J + 1)M−1δ] and lead to the following
demands

σi (δ) =
s̃i∑
j∈J s̃j

=

∑
j∈J e

−(J+1)δj − (J + 1)e−(J+1)δi∑
j∈J e

−(J+1)δj
. (5)

Demands (5) are non-negative only for values of δ within some set. To ensure
positive demands, it is sufficient to average with the simple inverse logit demand.
Demands (5) are not consistent with any ARUM since they do not exhibit the feature
of the ARUM that the mixed partial derivatives of σi (δ) alternate in sign. Indeed,
products are substitutes

∂σ1 (δ)

∂δ2
= −J2e−J(δ1+δ2)/

(∑
j∈J

e−Jδj

)2

< 0,

but
∂2σ1 (δ)

∂δ2∂δ3
= −2J3e−J(δ1+δ2+δ3)/

(∑
j∈J

e−Jδj

)3

< 0.
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