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Abstract

Several works published over the last two decades have shown for a stylized set-up with
homogeneous users that metering-based priority (MBP) schemes may generate Pareto improving
departure time adjustments similar to those induced by congestion pricing, but without any
financial transaction. We investigate whether MBP (i) still generates significant savings and
(ii) remains Pareto-improving, with various sources of heterogeneity (in schedule flexibility,
desired arrival time, and capacity usage). We consider two types of schemes: one where the
priority status is allocated randomly (R-MBP) and another (HOV-MBP), which only prioritizes
users with small capacity usages (e.g. carpoolers). We find that the relative total cost savings
of R-MBP decrease with heterogeneity in flexibility, but may increase with heterogeneity in
desired arrival time. It fails however to be Pareto-improving, as non-prioritized users are almost
systematically worse-off. HOV-MBP circumvents this issue by generating an ordering effect
and a modal shift, which both contribute to a better distribution of benefits among users.
Under favorable circumstances, they may even restore a Pareto improvement. Overall, MBP
appears as a realistic way to alleviate congestion, scoring well both in terms of efficiency and
social acceptability.

Keywords: priority, metering, departure time choice, bottleneck, congestion
JEL codes: L92, R41

1 Introduction

The type of dynamic priority scheme considered here relies on demand metering, which refers
to the action of regulating the inflow to an infrastructure. In usual applications such as ramp
metering (Papamichail et al. 2010, Geroliminis, Srivastava, and Michalopoulos 2011), perimeter
control (Ramezani, Haddad, and Geroliminis 2015) and passenger inflow control (Xu et al. 2014),
the purpose of metering is to prevent capacity losses or safety hazards at critical infrastructures by
holding queues in locations where they do not pose any risk. There, metering typically applies to
all users, without discrimination. In this paper however, metering is combined with bypasses, such
that some “priority users” can overtake the queues. This paper focuses on the additional benefits
of such bypasses.

When individuals do not choose their time of departure time (i.e. it is considered as given),
priority has an ordering effect and a modal shift effect. The first is a simple result from queueing
theory. When users with different values of time and service times wait in a queue, it is socially
optimal to reorganize the queue such that users with a larger ratio “value of time/service time” pass
first. This exact discipline would be impractical in traffic applications, but a good approximation
consists in prioritizing vehicles based on their occupancy. This ordering effect can already bring
a significant improvement over the traditional First-In, First-Out (FIFO) discipline. Yet, these
priority schemes also have a second benefit. They encourage users to shift towards prioritized
modes, which are also more socially efficient. We refer to this as the modal shift effect. These
two effects motivate for instance the pre-signals that let buses “jump the queue” at signalized
intersections (Wu and Hounsell 1998, Guler and Menendez 2014).

1



A third effect appears with departure time choice: the priority status protects selected users
against the negative externalities of non-priority ones. We refer to this as the compartmentalization
effect.1 In the literature that documents it, a transport authority selects the priority vehicles either
based on an arbitrary characteristic like the license plate (Daganzo and Garcia 2000, Fosgerau
2011, Knockaert, Verhoef, and Rouwendal 2016), or based on the on-ramp at which users enter
a highway (Lago and Daganzo 2007, Shen and Zhang 2010). These vehicles are then granted a
privileged access to the bottleneck at the center of the peak period, either via temporary reserved
lanes, or via a time- and group-dependent pricing (third-degree price differentiation). These works
largely focus on the case of a homogeneous population (same vehicle occupancy and same schedule
preferences), such that there is no ordering or modal shift effect. Yet, they show that when demand
is inelastic, the resulting temporal segregation is Pareto-improving regardless of the proportion that
is prioritized, and can achieve the same total cost savings as the best two-valued time-dependent
constant congestion toll (Fosgerau 2011). This is in sharp contrast with conventional static reserved
lanes, which improve welfare only under very specific conditions, and mildly so.2

This paper investigates whether these promising results can (i) be extended to cases with
heterogeneity in schedule preferences, and (ii) be combined with the modal shift and ordering
effects, when users have different capacity usages. The combination of all three effects can have
desirable consequences as we will show. The remainder of this paper is structured as follows. Section
2 reviews more in detail the literature dealing with the compartmentalization effect. Section 3
introduces our modeling assumptions and discusses practical set-ups for implementations. Section
4 focuses on the compartmentalization effect with a random selection of priority vehicles. Although
this is not necessarily a recommended policy, it isolates the compartmentalization effect from the
other two, thus simplifying the study of priority schemes with heterogeneous schedule preferences.
Section 5 then adds successively the ordering and modal shift effects and concludes with a case-study
comparing the relative significance of these effects and comparing metering-based priority with
conventional static reserved lanes. The mathematical derivations that are non essential to the flow
of the text are relegated to appendices.

2 The compartmentalization effect in the literature

From a purely economic viewpoint, the most natural way to spread the demand over the time
of day is to enforce a time-dependent toll, such as the one proposed by Vickrey (1969). Yet,
public opposition to congestion pricing and its regressive effects have motivated researchers to
investigate other alternatives, such as tradable credits (see de Palma et al. (2018) and the review
by Grant-Muller and Xu (2014)), reservations (Lamotte, de Palma, and Geroliminis 2017), and
priority. To the best of our knowledge, the idea of metering-based priority first appeared in a paper
considering departure time choice in the context of a highway merge (Lago and Daganzo 2007).
Lago and Daganzo show the counter-intuitive result that the total congestion cost can be alleviated
by reducing the capacity of one the two roads upstream of the merge. As a side comment, they
suggest that this could be taken to the extreme by applying metering.

Shen and Zhang (2010) explored this idea more in depth, for a freeway with several uncapacitated
on-ramps and a unique bottleneck at the end. The authors compare various ramp-metering plans
and show that large reductions of the total cost (up to 25 % with two on-ramps) can be achieved by
prioritizing the on-ramps with respect to each other. Fosgerau (2011) further formalized this concept
as follows: “A set of travelers is assigned to a priority group. Not all travelers can be given priority.
A more than proportional share of capacity is reserved for the priority group. When the reserved
capacity is not used, it is available for the nonprioritized travelers.” Although Fosgerau does not
indicate how the time-dependent capacity management would be achieved in practice, metering
seems to be the most natural interpretation for road applications. Fosgerau then demonstrates that
such a scheme is always Pareto-improving and that it “can achieve exactly the same travel time
and queueing outcomes as a [socially optimal two-level] coarse toll”.

A very similar outcome can be obtained by replacing metering with third-degree price discrimi-

1This was referred to as “congestion externality redistribution” by Shen and Zhang (2010), but we find this
expression somewhat misleading because it suggests that the sum of externalities is conserved.

2With a given demand and modal split, static reserved lanes cannot be Pareto-improving because the congested
period for non-priority users lasts unavoidably longer than without HOV lanes (Konishi and Mun 2010).

2



nation. Daganzo and Garcia (2000) for instance imposes a fine toll only on non-priority vehicles and
only during a part of the peak period, such that priority vehicles can all pass without competing
with non-priority ones. This also leads to a Pareto-improvement and a reduction of the congestion
cost of up to 25 % with homogeneous α−β−γ schedule preferences (see Section 3.1 for a definition).
This toll is suboptimal in that it does not remove all queuing, but it has the advantage of requiring
fewer toll payments, and might be socially more acceptable.3

Knockaert, Verhoef, and Rouwendal (2016) considers a similar set-up but imposes a toll also on
the priority vehicles, thereby generating even larger cost reductions, but with a significantly larger
total toll revenue. These toll-based policies do not require a physical separation of priority and
non-priority users, but they require toll booths and would unavoidably raise equity issues if they
were implemented, as they would not be as dissuasive for high- and low-income travelers.

All these papers assume α − β − γ preferences, except for Fosgerau (2011) that allows for a
more general specification.4 They also all assume a homogeneous population, except for Daganzo
and Garcia (2000) which includes an extension with some heterogeneity in desired arrival time, but
only within some bounds and with α− β − γ preferences, such that it has almost no effect. Overall,
it appears that the literature has largely focused on the ideal case that best illustrates the benefits
of priority schemes, without investigating whether negative effects could arise under more realistic
assumptions, and in particular heterogeneity of preferences.

To conclude this literature review, we shall also mention the rich literature dedicated to
departure time choice with static reserved lanes - see e.g. Qian and Zhang (2011) and Zhong
et al. (2020). Static reserved lanes are admittedly simpler to implement and to study (because
capacity is independent of time), but they are also less efficient, as permanently granting a more
than proportional share of the capacity to some users unavoidably implies some capacity losses
(Konishi and Mun 2010, Chen, Varaiya, and Kwon 2005).

3 Assumptions

Vickrey’s bottleneck problem considers departure time choice in the simplest possible setting: some
population of selfish and non-cooperating users approximated by a continuum, wishes to go from A
to B, with some schedule preferences (see Section 3.1). The originality of our approach lies in the
congestion mechanism introduced in Section 3.2. The most important notations (those used across
different sections) are listed in Table 1.

3.1 Schedule Preferences

This paper considers the following general specifications of the schedule preferences similar to those
used by Lindsey (2004) to establish existence and uniqueness of equilibrium.

Assumption 1. The population is a set J = {1, . . . , J} of homogeneous groups of users. Group
j ∈ J has a size Nj > 0, a desired arrival time t∗j and a trip cost function cj(T, t) = αT + SPj(t),
where SPj denotes the schedule penalty of group j, T denotes the extra travel time due to congestion
and α > 0 is the value of time. The schedule penalty SPj is continuous, non-negative, reaches 0 for
t = t∗j and is such that for all feasible t,

lim
∆t→0+

(
SPj(t+ ∆t)− SPj(t)

∆t

)
> −α, ∀j ∈ J . (1)

The schedule penalty functions (SPj)j∈J capture the inconvenience associated to arriving at
a time different from the preferred one. They do not need to be differentiable. The α − β − γ
preferences of Arnott, de Palma, and Lindsey (1993) represent a widely-used example:

SP(t) =

{
β(t∗ − t), if t < t∗

γ(t− t∗), otherwise.
(2)

3Theoretically, the collected revenue could even be brought arbitrarily close to zero when users differ only in
terms of their desired arrival times (Daganzo and Garcia 2000).

4Specifically, Fosgerau (2011) assumes that utility is a separable function of departure time and arrival time,
strictly concave, increasing with the departure time and decreasing with the arrival time.
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Variables Unit Description
α $/h unit cost of travel time
β $/h unit cost of arriving early
γ $/h unit cost of arriving late

δ $/h , βγ
β+γ

t∗ h desired arrival time
T h queueing time

T - , (t0, te), set of allowed departure times
J - set of user groups
N users total number of users

Ñ veh total number of vehicles
Nj users number of users in group j ∈ J
Ñj veh number of vehicles in group j ∈ J
S veh/h capacity of the entire bottleneck
τ h demand-to-capacity ratio
SP veh/h capacity preemptable by priority users
g users/veh vehicle occupancy of priority vehicles
ḡ users/veh average vehicle occupancy
p - proportion of priority users
q - proportion of priority vehicles

q̄ - , SP/S, maximal proportion of priority vehicles

p̄ - , gSP/(S − SP + gSP), maximal proportion of priority users
SP $ schedule penalty function
C - image of T under SP
C $ reduced form cost function
CP, CNP $ cost for priority (resp. non-priority) users
TC $ total cost

TCref $ total cost without a priority scheme

%∆TC - , (TCref − TC)/TCref, relative total cost savings
qo - proportion of priority vehicles maximizing %∆TC
p∗, q∗ - equilibrium proportion of priority users (resp. vehicles)
L h length of the interval over which t∗ is distributed
θ $ carpooling inconvenience
Fθ - cumulative distribution function of θ
θ̄, θ−, θ+ $ average, minimum and maximum carpooling inconvenience
A $ congestion advantage derived from being prioritized
w h-1 parameter of the function SP defined in the note below Fig. 7

Table 1: Notations
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Figure 1: Schematic view of the metering-based priority scheme with parallel queues

The coefficients β and γ account for the costs of earliness and lateness respectively. With these
preferences, the condition in Eq. (1) reduces to β < α. In plain words, it ensures that users always
prefer being at their destination to being on the road.

Note that while Lindsey (2004) allowed the value of time α to be group-specific, we can assume
without any loss of generality that it is homogeneous in the absence of pricing.

3.2 Bottleneck Dynamics with Metering-Based Priority

3.2.1 Mathematical Description

The supply side in Vickrey’s bottleneck problem is highly stylised: it considers a single bottleneck
of constant capacity S, where all queueing occurs in a FIFO manner, without explicit spatial
propagation. The variant considered in this paper is similar to a highway merge with ramp metering.
Vehicles waiting upstream of the bottleneck are separated into two queues, denoted NP and P (see
Fig. 1). Queue NP is open to all vehicles, while queue P is reserved for priority vehicles. Queue P
has direct (i.e. un-metered) access to a subpart of the bottleneck with constant capacity SP ≤ S. If
we denote rP(t) and sP(t) the flows of priority vehicles upstream and downstream of the bottleneck
and QP(t) the queue length, we have the classic formulation of bottleneck dynamics (de Palma
et al. 1983): (

dQP

dt
(t), SP(t)

)
=

{(
rP(t)− SP, SP

)
, if QP(t) > 0 or rP(t) > SP(

0, rP(t)
)
, otherwise.

(3)

For NP users however, metering leads to a time-dependent capacity, which depends on the flow
on the non-metered approach. If we define rNP(t) and sNP(t) as the flows of non-priority vehicles
upstream and downstream of the bottleneck and QNP(t) the number of non-priority vehicles
queueing at time t, we have:(

dQNP

dt
(t), sNP(t)

)
=

{(
rNP(t)− (S − SP(t)), S − SP(t)

)
if QNP(t) > 0 or rNP(t) > (S − SP(t))(

0, rNP(t)
)
, otherwise.

(4)

We refer to this scheme as metering-based priority (MBP) and to SP as preemtable capacity, to
distinguish it from conventional static schemes in which the capacity SP is reserved at all times.
Unlike a static reserved lane, a preemptable capacity cannot be underutilized when non-priority
users are queuing.

Note also that the preemptable capacity might be relatively small, while the metered queue
should have access to the full bottleneck capacity when there is no priority user. In that sense, our
scheme is closer to “mainline-metering” than to traditional ramp-metering.

3.2.2 Practical View

The schematic view provided in Fig. 1 may seem to suggest that MBP requires the road upstream
of the bottleneck to have a capacity of at least S+SP. This is actually not necessary, as queues may
be stored at different mileposts. Small (1983) provides an example of such scheme for highways. We
reproduce its illustration in Fig. 2, but note that the notations used (explained in the figure’s legend)
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Figure 2: A practical view of metering-based priority scheme with a fixed number of lanes (Small
1983)

differ from ours. In short, the scheme requires non-priority vehicles to stay on their lane, while
allowing priority vehicles to slalom around the queues. It is similar to the concept of pre-signals
ahead of signalized intersections (Wu and Hounsell 1998, Guler and Menendez 2014).

4 Random Priority

This section focuses on Random, Metering-Based Priority (R-MBP), a scheme in which the priority
status is assigned to a proportion q of randomly selected vehicles. The priority status is allocated
independently of the schedule preferences and of the vehicle occupancy, so that the metering scheme
does not influence vehicle occupancy (no modal shift). These assumptions ensure that (i) the
proportion of prioritized users p equals q and that (ii) the total passenger delay is equal to the
average occupancy ḡ times the total vehicle delay (no ordering effect).

Let N =
∑
j∈J Nj be the total population size. Because the bottleneck capacity is expressed in

vehicles per hour, it is convenient to define Ñ = N/ḡ, the total number of vehicles. For priority
to be effective, the demand-to-capacity ratio of priority vehicles should be smaller than the one
without metering, i.e. qÑ/SP ≤ Ñ/S. Put differently, the prioritized proportion q should be kept
within the interval [0, q̄], where q̄ = SP/S.

4.1 Equilibrium: Definition, Existence and Uniqueness

In the present context, an equilibrium is a situation such that no individual user can reduce her
travel cost by unilaterally changing departure time. Because of its deterministic demand model,
the type of equilibrium considered here is commonly referred to as Deterministic Dynamic User
Equilibrium (DDUE). The existence and uniqueness of DDUE were shown by Smith (1984) and
Daganzo (1985) for a bottleneck of constant capacity and a continuum of users differing only in
their desired arrival times t∗, with convex schedule penalty functions.

As explained by Lago and Daganzo (2007), these results can be extended to the case with a
time-dependent capacity by rescaling the time axis. The case with metering-based priority then
follows by considering the two groups of users sequentially. The priority users are not influenced
by the non-priority ones and are faced with a bottleneck of constant capacity SP, so a unique
equilibrium exists for them. The departure-rate of priority users can then be considered as given,
which means that the non-priority users can also be considered in isolation, but with a time-varying
capacity.

The same approach is adopted here, but starting from the existence and uniqueness results of
Lindsey (2004) and Akamatsu et al. (2018) instead, which allow for more general heterogeneity and
non-convex schedule penalty functions. This leads to the following key result (the derivations are
detailed in Appendix A).
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Assumption 2. The bottleneck is accessible with constant capacity S > 0 during a time interval
T = (t0, te), such that (te − t0)S > Ñ and t∗j ∈ T , ∀j ∈ J .

Proposition 1. Let Assumptions 1 and 2 hold. Consider a R-MBP scheme with SP ∈ (0, S) and
q ∈ (0, q̄). There exists at least one deterministic departure-time user equilibrium. It may not be
unique, but the travel costs of each group are uniquely defined.

The departure-time user equilibrium is not necessarily unique in the sense that during uncon-
gested periods, several departure profiles may correspond to the same equilibrium costs. For the
purpose of this paper however, it suffices to know that the equilibrium costs are unique.

4.2 Benchmark: Identical Schedule Preferences

This section considers the effect of R-MBP on a population having identical schedule preferences.
This case is already treated in the literature, but we revisit it in a way that prepares for cases with
heterogeneous users.

4.2.1 Equilibrium Description

With a homogeneous population and a constant capacity bottleneck, the unique individual cost
only depends on the demand-to-capacity ratio τ = Ñ/S, via a function C, known as the reduced
form cost function (Arnott, de Palma, and Lindsey 1993). Given Assumption 1, this function can
be expressed as:

C : R+ → R

τ 7→ C(τ) = sup

{
c ∈ C |

∫
T

[SP(t) < c] dt ≤ τ
}

, (5)

where C denotes the image of T under SP and where [P] is equal to 1 if P is true and 0 otherwise
(Iverson bracket). Eq. (5) can be seen as a side-result of a more general expression obtained with
time-dependent capacity (Lemma 3, Appendix B.1). With the α− β − γ preferences, it reduces to
C(τ) = δτ , with δ = βγ

β+γ . We extend the scope of this concept and apply it to describe situations
with metering-based priority.

Proposition 2. Consider a homogeneous population satisfying Assumption 1 and a bottleneck
satisfying Assumption 2. Under DDUE with metering-based priority, CP = C(qÑ/SP) and
CNP = C(Ñ/S). The DDUE with metering-based priority represents a Pareto improvement
compared to the DDUE with no priority.

The proof is provided in Appendix B.1.
The effect of R-MBP on priority users is relatively intuitive: by providing them with a more

than proportional share of the capacity (q ≤ SP/S), it reduces their demand-to-capacity ratio,
and therefore their cost. A more surprising result is that the cost of non-priority users remains
the same with and without metering. This is because with homogeneous users, the equilibrium
individual cost is equal to the largest schedule penalty experienced among all users (see Eq. (5)).
Since the total population size does not change and no capacity is wasted, this value does not
change when implementing metering-based priority. As this could offer opportunities for practical
implementations, one of the primary objectives of this paper is to determine whether this result
still holds under more realistic conditions.

By contrast, the individual costs with a static reserved lane would be CP = C
(
qÑ/SP

)
(as

with R-MBP) and CNP = C
(

(1− q)Ñ/(S − SP)
)

. Since q < q̄ ⇔ (1− q)/(S − SP) > 1/S, such

schemes cannot make priority users better-off without making non-priority users worse off.

4.2.2 Optimal Priority Scheme

This section considers the effect of priority on the total cost at equilibrium, TC. Letting TCref

denote the total cost without metering, we define the relative total cost savings as follows:

%∆TC ,
TCref − TC

TCref
. (6)
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Figure 3: Linear and quadratic reduced cost functions, and their optimal priority schemes

With homogeneous schedule preferences and R-MBP, the total cost TC depends on the pre-
emptable capacity SP and on the proportion q of priority vehicles via:

TC(SP, q) = qNCP + (1− q)NCNP. (7)

As CNP = C(Ñ/S) and TCref = NC(Ñ/S), the relative total cost savings reduces to

%∆TC(SP, q) =
NC(Ñ/S)− qNCP − (1− q)NC(Ñ/S)

NC(Ñ/S)
= q

(
1− CP

C(Ñ/S)

)
. (8)

Since CP decreases with SP while CNP remains constant (Proposition 2), the model suggests
that total cost TC decreases with SP, such that it is socially optimal to let priority users preempt
the entire bottleneck capacity (SP = S). In practice, however, this would raise several issues
(unplanned trips, uncertainty in bottleneck access time, etc.) likely to penalize non-priority vehicles
beyond acceptable levels. Thus, the model seems to be more appropriate for situations with a
relatively small preemptable capacity SP. This will naturally be the case when prioritizing only
High-Occupancy Vehicles (HOV), see Section 5.

Let us now turn to the influence of the proportion of priority vehicles, q. With a linear cost
function C(Ñ/S) = δÑ/S, the total cost TC(SP, q) = δNÑ

[
q2/SP + (1− q)/S

]
is a second order

polynomial, which is minimized for q = SP/(2S). In this case, priority vehicles experience a cost
half as large as the others, such that %∆TC = SP/(4S). If we set SP = S, we recover the situation
studied by Daganzo and Garcia (2000) and illustrated in Fig. 3a. The blue and red rectangles
represent the contributions of priority and non-priority vehicles to the social cost. The sum of the
two rectangles’ areas (i.e. the total cost) is minimized for q = 0.5, leading to a relative total cost
savings (the gray area) of 25%.

The comparison with Fig. 3b suggests that metering-based priority schemes can provide even
larger benefits when users have a convex cost function. This is formalized in the following proposition
(proven in Appendix C).

Proposition 3. Let assumption 2 hold. Consider a population having homogeneous schedule
preferences satisfying Assumption 1, with a continuously differentiable, strictly increasing and
convex reduced form cost function. There exists a unique proportion qo maximizing the relative total
cost savings %∆TC. It satisfies qo > q̄/2 and %∆TC(qo) ≥ q̄/4.

The reduced form cost function is convex when the schedule penalty function is convex and
satisfies Assumption 1, but a convex schedule penalty function is not required for the convexity of
the cost function (see Appendix B.2).

Fosgerau (2011) includes a similar result for a different class of utility functions (strictly concave
in departure time and arrival time, increasing with arrival time and decreasing with departure time).
Specifically, Fosgerau (2011) showed that with such utility functions, priority schemes achieve at
least half the cost savings of the ideal fine toll. Since the ideal fine toll reduces the total cost by at
least 50% with these utility functions and since our utility functions linearly decrease with the time
of departure from the origin, Fosgerau’s specification admits ours as a limiting case.
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Figure 4: Relative total cost savings with homogeneous users

Note: Analytical forms: (a) %∆TC(SP, q) = q
(
1 − qS

SP

)
, (b) %∆TC(SP, q) = q

(
1 −

(
qS
SP

)2)
.

Fig. 4 shows the relative total cost savings %∆TC(SP, q) obtained with linear and quadratic5

cost functions for all the range of possible SP/S and q. The maximum total cost savings are

%∆TC (S, 0.5) = 25% and %∆TC
(
S,
√

1/3
)
' 38.5%, respectively.

4.3 R-MBP with Heterogeneous Schedule Preferences

This section investigates whether the promising properties of R-MBP established in the literature
(and summarized in Section 4.2) still hold under heterogenous schedule preferences. We distinguish
two types of heterogeneity that we treat first separately to maintain tractability (see Section 4.3.1
and 4.3.2), and then combined in a numerical example (see Section 4.4).

4.3.1 Users with Different Flexibility

Consider the following variation of Assumption 1, which constrains all groups to have proportional
schedule penalty functions.

Assumption 1′. The population is a set J = {1, . . . , J} of homogeneous groups of users. Group
j ∈ J has a size Nj > 0. All groups have the same desired arrival time t∗ and a trip cost function
cj(T, t) = αT + kjSP(t), where SP denotes the common base schedule penalty, kj denotes group j’s
inflexibility, T denotes the extra travel time due to congestion and α > 0. The groups are numbered
by increasing inflexibility, such that 0 < k1 < k2 < . . . < kJ . The schedule penalty SP is continuous,
non-negative, reaches 0 for t = t∗ and is such that for all feasible t,

lim
∆t→0+

(
kj

SP(t+ ∆t)− SP(t)

∆t

)
> −α, ∀j ∈ J .

The case without priority has already been studied multiple times with α− β − γ preferences
(see e.g. Arnott, de Palma, and Lindsey (1988), van den Berg and Verhoef (2011)). By applying
the same ideas with our more generic schedule penalty functions, one can show that the individual
cost of group j is

Cref
j = kjC

(
τ ref
j

)
+

j−1∑
i=1

ki
(
C
(
τ ref
i

)
− C

(
τ ref
i+1

))
,

where τ ref
j = (

∑J
i=j Ñi)/S is the minimum duration required to serve all the groups that are at

least as inflexible as group j, and C is the reduced form cost function of a homogeneous population
with schedule penalty SP and flexibility k = 1.

5It is easy to show that a quadratic cost function emerges when the marginal utility rates at the origin and at the
destination are both linear in the time interval considered.
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The first component (kjC(τ ref
j )) results from the competition among vehicles that are at least as

inflexible as group j (note that their exact level of inflexibility does not matter), while the second is
the sum of delays imposed by all the groups strictly more flexible than j. Defining for convenience
a fictive group with k0 = 0, the individual costs can be rewritten as:

Cref
j =

j∑
i=1

(ki − ki−1)C
(
τ ref
i

)
, ∀j ∈ J . (9)

With R-MBP, the individual costs (CP
j )j∈J and (CNP

j )j∈J are given by expressions similar to

Eq. (9), but with different periods (τP
j )j=1...J and (τNP

j )j=1...J . For priority vehicles, it suffices to

scale down both the population size and the capacity, so τP
j = q(

∑J
i=j Ñi)/S

P. For non-priority
vehicles, two cases must be distinguished:

τNP
j =


(1−q)

∑J
i=j Ñj

S−SP , if
(1−q)

∑J
i=j Ñi

S−SP ≤ qÑ
SP

qÑ+(1−q)
∑J

i=j Ñi

S , otherwise
∀j ∈ J . (10)

The first expression is used when all non-priority vehicles of group j and those that are less flexible
travel simultaneously with priority vehicles (they then see a constant capacity S − SP). When this
is not the case, the duration required to serve the non-priority vehicles that are at least as inflexible
as group j (with the capacity left unused by priority vehicles) is equal to the duration required to
serve these vehicles plus all priority ones, with the full capacity S. The second expression in Eq.
(10) is the direct mathematical translation of this definition.

Before comparing the effects of R-MBP for the heterogeneous and homogeneous cases, let
us define some additional notations. Let K , (kj)j∈J and N , (Nj)j∈J . For all j ∈ J , let

%CP
j , CP

j /C
ref
j and %CNP

j , CNP
j /Cref

j denote the relative individual costs of group j’s priority

and non-priority vehicles, and let %∆TC(SP, q,K,N) denote the relative total cost savings. For
comparison purposes, we also define their counterparts %CP , CP/Cref, %CNP , CNP/Cref and
%∆TC(SP, q) for the case where all N users have the same schedule penalty function SP, with the
same k.6

Proposition 4. Let assumptions 1′ and 2 hold. Consider a R-MBP scheme with SP ∈ (0, S) and
q ∈ (0, q̄).

a) CNP
1 = Cref

1 .

b) If the reduced form cost function C is strictly increasing, then CNP
j > Cref

j for all j = 2, . . . J .

c) If, in addition, x 7→ C(νx)
C(x) is non-increasing for all ν ∈ (0, 1) and x ≥ 0, then

i) %CP
j ≥ %CP and %CNP

j ≥ %CNP for all j ∈ J ;

ii) %∆TC(SP, q,K,N) ≤ %∆TC(SP, q).

The proof is relegated to Appendix C.
Proposition 4.b contrasts with the homogeneous case, because the R-MBP scheme does not

Pareto-dominate the laissez-faire strategy. Under some additional restrictions,7 Proposition 4.c
goes further and establishes that all individual relative cost savings are smaller than in an analogue
situation with a homogeneous population. As a result, the relative total cost savings %∆TC is also
smaller. In light of these results, the homogeneous situation appears as a best case for the R-MBP
policy, which seems exceedingly optimistic.

6With homogeneous users, the relative individual costs and relative total savings do not depend on k.
7Examples of functions C such that x 7→ C(νx)

C(x)
is non-increasing include C(x) = axb with a, b > 0 (incl. the

α− β − γ preferences) and logarithmically convex functions.
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Figure 5: Cost decomposition without metering, with α− β − γ preferences and uniformly
distributed t∗

Note: α = 1, β = 0.3, γ = 1.2.

4.3.2 Users with Different Desired Arrival Times

This section shows that R-MBP is also unlikely to be Pareto-improving with heterogeneity in desired
arrival times, but that in this case, its benefits may exceed those estimated with homogeneous
users.

We start by analyzing the cost savings of R-MBP for a population of users having homogeneous
α − β − γ coefficients, but where t∗ is uniformly distributed on an interval [t∗1, t

∗
2] such that

(t∗2 − t∗1) , L ∈ [0, Ñ/S). Note that this set-up is already partially covered by Daganzo and Garcia
(2000), which considers a more general sigmoid cumulative distribution of desired arrivals, but only
within some bounds, such that even priority users always queue. Our treatment of the case with
α− β − γ preferences extends Daganzo and Garcia (2000) not only in that it addresses the case
where priority vehicles do not have to queue, but it also provides a quantitative analysis of the cost
savings.

The case with continuously distributed desired arrival times is not covered by Assumption 1
because of the infinite number of group, but it is well covered by the literature (starting with
Vickrey (1969)). The social cost decomposition at equilibrium is displayed in Fig. 5 as a function of
L. The total queueing time is constant for L ∈ [0, Ñ/S), but the total schedule penalty decreases
linearly and converges to 0 as L tends towards Ñ/S. The case L = Ñ/S is degenerate8, and the
cases L > Ñ/S exhibit no congestion at all, because the “demand density”, Ñ/L, is everywhere
smaller than the capacity S.

Let %∆TC(SP, q, L) and %∆TC(SP, q) denote the relative total cost savings achieved with
heterogeneous and homogeneous t∗ respectively. As shown hereafter, the R-MBP strategy leverages
the particular properties of the equilibrium with heterogeneous t∗ to alleviate congestion even more
significantly than with homogeneous users.

Proposition 5. Consider a bottleneck of constant capacity S and a population of size N having
the same α− β − γ preferences (with β < α) but with t∗ uniformly distributed on [t̄∗ − L

2 , t̄
∗ + L

2 ],

L ∈ (0, Ñ/S). Assume the bottleneck is accessible during a sufficiently large time interval. Applying
R-MBP leads to %∆TC(SP, q, L) ≥ %∆TC(SP, q) and supq,L %∆TC(SP, q, L) = 100 %.

Proof. Proof. Two cases should be distinguished, depending on whether the priority vehicles
experience congestion. Since their demand density is qÑ/L and their capacity is SP, this depends
on whether q is smaller or larger than LSP/Ñ .

Case with No Congestion for Priority Vehicles (q ≤ LSP/Ñ). Let us consider separately
the sum of schedule penalties and the sum of queueing costs. The sum of schedule penalties over
all users (both priority and non-priority) is the same with and without R-MBP. Indeed, the arrival
order at destination with R-MBP can be obtained by reallocating the arrival times of early (resp.
late) or on-time vehicles without R-MBP, in such a way that all these vehicles remain early (resp.
late) or on time. With homogeneous β and γ coefficients, such modifications leave the sum of
schedule penalties unchanged.

8There can be two equilibria, one with delays (the limit case as L→ Ñ/S from below) and one without (the limit
case as L→ Ñ/S from above).
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Figure 6: Equilibrium queueing times with α− β − γ preferences and uniformly distributed t∗

Note: α = 1, β = 0.3, γ = 1.2.

Let us now consider the queueing time profiles, illustrated in Fig. 6a. For non-priority vehicles,
the profile is the same as without metering. Thus, the only difference in terms of total cost
between R-MBP and the no-priority case is that qN vehicles uniformly distributed between t∗1
and t∗2 experience no delay at all. Without metering, these vehicles would have experienced

queueing time uniformly distributed in the interval
[
δ
(
Ñ
S − L

)
, δ ÑS

]
. Thus, the total queueing

cost saved is qNδ
(
Ñ
S −

L
2

)
. Since the overall congestion cost without metering is δN

(
Ñ
S −

L
2

)
,

%∆TC(SP, q, L) = q. It is larger than with homogeneous users (%∆TC(SP, q) = q(1− qS
SP )) and its

limit as q tends towards LSP/Ñ and L tends towards Ñ/SP is 100 %.
Case with Congestion for All Vehicles (q ≥ LSP/Ñ). As in the previous case, the sum

of schedule penalties remains unchanged. Here however, priority vehicles do experience queueing
at equilibrium. An example of such scenario is shown in Fig. 6b. The qN priority users traveling

between tP1 and tP2 benefit from a reduction of δ
(
Ñ
S −

qÑ
SP

)
in their individual queueing cost. Thus,

the overall social cost savings is

%∆TC(SP, q, L) =
q
(
Ñ
S −

qÑ
SP

)
Ñ
S −

L
2

=
q
(

1− qS
SP

)
1− LS

2Ñ

.

Since L < Ñ/S, the denominator (1 − LS
2Ñ

) ∈ ( 1
2 , 1), so %∆TC(SP, q, L) > q

(
1− qS

SP

)
=

%∆TC(SP, q).
The degenerate cases q = LSP/Ñ admit two equilibria (one with congestion, and one without),

but both equilibria satisfy the results stated in the proposition.

The R-MBP strategy Pareto-dominates the laissez-faire under the assumed conditions. This
result depends however heavily on the α− β− γ preferences postulated in Proposition 5. Recall the
first-order equilibrium condition: if a user with a differentiable schedule penalty function SP arrives
at a time t, then αT ′(t) = −SP′(t). If SP′(t) increased smoothly from −β to +γ, users would thus
impose larger delay variations |T ′| when arriving further from their t∗.

To illustrate this, consider the situation in Fig. 7, which is similar to the one of Fig. 6, but with
a convex approximation of the α− β − γ preferences. Because the equilibrium is more complicated
to derive analytically, we rely instead on a discrete time approximation of equilibrium (see the
algorithm described in Appendix E). The total cost without metering is represented as a function
of L in Fig. 7a. For convenience, we choose a value of time α = 1, such that the costs can be
expressed in terms of equivalent waiting time. As L tends towards Ñ/S, users arrive closer to their
desired time t∗, and thus experience not only smaller schedule penalties, but also smaller delays,
because |T ′| takes smaller values. This also explains why here, unlike with the α−β−γ preferences,
the total cost decreases towards 0 as L tends towards Ñ/S. This situation is less favorable for the
R-MBP strategy, because modifying the sequence of vehicles (which naturally sort by increasing t∗)
leads to larger delays, as illustrated in Fig. 7c. Yet, heterogeneity in t∗ still allows for maximum
relative total cost savings %∆TC that are larger than with homogeneous users (L = 0) - see Fig.
7b.
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Figure 7: Equilibrium queueing times and cost decomposition with a smooth approximation of
the α− β − γ preferences and uniformly distributed t∗

Note: Results obtained with Ñ/S = 2 h, discrete arrival times spanning over a 4-hour period centered
around the mean t∗ (time step: 0.01 h). Schedule preferences: SP(t) =

∫ t
t∗

δ
π

tan−1(w(s − t̃)) ds, with

t̃ = t∗ + tan
(
π(γ−β)
2(γ+β)

)
1
w

, w = 10 h-1, α = 1, β = 0.3 and γ = 1.2.
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Figure 8: Case-study with R-MBP

Note: Ñ/S = 2.5 h. Time discretization: every 1 min, from 5 AM to 10 AM.

4.4 Numerical Example

We now combine heterogeneity in flexibility and in desired arrival time. Since the R-MBP scheme
is not expected to be Pareto-improving, this section compares the gains and losses incurred by
all individuals. All users have the same generic smooth and convex schedule penalty function
introduced in Fig. 7 (with w = 10 h-1), but their flexibility levels are uniformly distributed between
three values ((α, β, γ) ∈ {(1, 0.3, 1.2), (1, 0.6, 2.4), (1, 0.9, 3.6)}), while their desired arrival times t∗

are normally distributed (centered around t = 8 h, with σ = 0.25Ñ/S). Flexibility and desired
arrival time are independent.

The three graphs in Fig. 8 summarize the global and distributional consequences of the R-MBP
scheme. From a global perspective, the R-MBP scheme reduces the total cost for all SP > 0 and
q ∈ (0, q̄). When SP is large and the proportion of prioritized vehicles is near 0.7SP/S, savings
represent up to 45.6% of the total cost (value obtained for SP = S and q = 0.7), as illustrated in
Fig. 8a. This is slightly larger than the results obtained with homogeneous users (cf Fig. 4).

At the individual level however, the consequences are more contrasted. Fig. 8b shows the
cumulative distribution of individual changes in congestion cost (in units of equivalent waiting
time), for the set-up that maximizes the total cost savings (SP = S and q = 0.7) and for another
set-up with a smaller prioritized proportion (q = 0.2). In the socially optimal set-up, the maximum
loss is equivalent to about 34.5 min of queueing time, the maximum gain to 17 min, and the average
cost savings to 5 min. Although only a minority of the population (about 25%) is worse-off, the
very large cost increase imposed on a few users would most likely undermine the acceptability of

13



this socially optimal R-MBP scheme.
The set-up q = 0.2 has very different distributional consequences. The proportion of users made

worse-off by the R-MBP scheme is much larger (67 %), but the largest loss is now only 1.88 min, for
an even larger maximum gain (17.9 min) and an average gain of 1.56 min. Yet, the overall ratio of
total losses over total gains is still about 29 %, while it reaches 32 % with q = 0.7, and takes similar
values for a wide range of other set-ups (SP, q), as shown by Fig. 8c. Thus, there is a trade-off
between large cost savings and a broadly distributed total loss, but the overall loss-over-gain ratio
remains approximately the same. It contrasts rather sharply with the Pareto-improvement result
obtained in the literature and in Section 4.2 for homogeneous users, and strongly impairs the
acceptability of R-MBP.

5 Targeted Priority

This section considers schemes where the priority status is not randomly allocated, but given to
carefully chosen categories of users. In the context of road traffic, these could be vehicles with
several occupants (known as High-Occupancy Vehicles, or HOV) and/or vehicles with a small
capacity usage. In the context of crowded train stations, they could be passengers with a physical
condition that make waiting particularly inconvenient (pregnant women, elderly people), or again,
passengers with a small capacity usage (e.g. those without luggage). Depending on the chosen
category, the compartmentalization effect is reinforced by either only an ordering effect (e.g. for
pregnant women or elderly people), or by both an ordering effect and a mode choice effect. To
simplify the exposition, we depict targeted priority schemes with a concrete example, HOV bypasses,
and refer to the corresponding scheme as HOV-MBP.

5.1 Two simplifying assumptions

This section introduces two assumptions that simplify the integration of carpools in the departure
time choice problem.

Assumption 3. Carpools all have g > 1 occupants, while others have only one.

Assumption 4. Carpoolers travel only with members of their own group j ∈ J .

Assumption 3 implies that the proportion p of prioritized users now differs from the proportion
q of prioritized vehicles. With these notations, ḡ = qg+ 1− q, p = qg/ḡ and q = p/(p+ g− pg). As
in Section 4, the proportion of priority vehicles should be kept within the interval [0, q̄ = SP/S] to
ensure that they experience less congestion than without metering. In terms of passengers, this
translates into a similar condition p ∈ [0, p̄], with

p̄ = gSP/(S − SP + gSP).

Assumption 4 ensures that carpoolers choose their departure times as if they were traveling on
their own, as also assumed by Yu, van den Berg, and Verhoef (2019). Although the bargaining
process that would normally lead to the choice of departure time among users with heterogeneous
preferences certainly has important consequences (see e.g. (Picard, Dantan, and de Palma 2018) in
the context of mode choice within couples), we leave it as a future research direction for a paper
that would focus on carpooling itself (and not on priority schemes).

5.2 Predetermined Carpooling Decision

This section considers the proportion of carpoolers as given and compares the HOV-MBP scheme
with a R-MBP scheme that would prioritize exactly the same number of vehicles. The difference
between the two schemes illustrates the ordering effect.

To simplify the analysis, we rely on the following assumption:

Assumption 5. Every group j ∈ J contains the same proportion p0 of carpoolers.
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Assumption 5 ensures that the equilibrium queueing profile with HOV-MBP is the same as
with the R-MBP scheme that prioritizes a proportion of vehicles equal to q0 = p0/(p0 + g − p0g),
the proportion of HOV. There is the same number of priority vehicles with both schemes, but the
priority vehicles have more occupants on average with HOV-MBP, so that the proportion of users
made worse-off by HOV-MBP is smaller than with the R-MBP scheme. The same holds for the
total cost, as formalized hereafter (and proven in Appendix C).

Proposition 6. Let assumptions 1, 2, 3, 4 and 5 hold. Consider the HOV-MBP scheme and the
associated R-MBP scheme that prioritizes the same proportion of vehicles q0. The relative total
cost savings they achieve satisfy %∆TCR-MBP ≤ %∆TCHOV-MBP.

In the special case where users have homogeneous schedule preferences,

%∆TCR-MBP

%∆TCHOV-MBP
=
ḡ

g
=

1

g
+ q0

(
1− 1

g

)
. (11)

In the special case where flexibility is the only source of heterogeneity (Assumption 1′),

%∆TCR-MBP

%∆TCHOV-MBP
≤ ḡ

g
=

1

g
+ q0

(
1− 1

g

)
. (12)

Note that the ratio ḡ/g linearly increases from 1/g to 1 as q0 varies from 0 to 1, i.e. as the
proportion of carpools increases. In other words, the ordering effect is particularly strong when a
small proportion of vehicles is prioritized.

The main drawback of HOV-MBP is that the proportion of prioritized users can only be
controlled via the choice of the occupancy threshold for priority users. This limitation might
be problematic for pure welfare-maximizing strategies (which typically require large prioritized
proportions, as seen in Section 4), but acceptability also matters and Section 5.3 shows that the
HOV-MBP scheme has significant advantages in this regard.

5.3 Endogenous Carpooling Decision

5.3.1 Carpooling inconvenience

Let us now consider the case where the population size N is given, but the number of vehicles
Ñ may change as users choose whether to carpool or not. As explained in Appendix D, many
complex carpooling models have been proposed in the literature but as our focus here is rather on
the interaction between carpooling, priority and departure time choice, we prefer a parsimonious
model. Users take this second decision by weighing the difference in congestion cost against their
own preferences for the two modes. Following Konishi and Mun (2010), we model this with an
individual specific inconvenience θ ∈ R incurred when carpooling. This cost can be positive or
negative, and accounts for inconveniences such as the need to detour, the privacy loss, or the extra
organizational load, as well as for carpooling advantages, such as the opportunity to socialize or
the sharing of fixed travel costs.

Assumption 6. The carpooling inconvenience θ is independent of the schedule preferences. The
support of its probability density function fθ is an interval [θ−, θ+] ⊂ R, with θ− < 0, and θ+ > 0
large enough to ensure that some users never carpool.

Letting Fθ denote the cumulative distribution function of the carpooling inconvenience, As-
sumption 6 ensures that there exists a proportion Fθ(0) > 0 of “natural carpoolers”, who carpool
even without the HOV-MBP scheme.9 To improve readability, we also denote θ(p) the inverse of
the restriction of Fθ to [θ−, θ+]. In other words, a proportion p of users has an inconvenience cost
θ ≤ θ(p).

9This is different from Konishi and Mun (2010), where θ was assumed to be always positive, such that no user
would carpool in the absence of HOV lanes.
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Figure 9: Equilibrium with endogenous proportion of efficient users
Note: With α− β − γ preferences, a uniform distribution of the carpooling inconvenience θ of mean θ̄ and
with SP = S/3 and g = 2.

5.3.2 Characterization of the user equilibrium

When users have homogeneous schedule preferences, the equilibrium proportion of carpoolers must
satisfy p = Fθ(a), where a denotes the congestion cost savings derived from being prioritized. Yet,
with HOV-MBP and a given preemptable capacity SP, this advantage a depends on the proportion
p of carpoolers via:

a = AHOV-MBP(p) =

{
C
(
Ñ(p)
S

)
− C

(
pN
gSP

)
, if p ∈ [0, p̄] ,

0, if p ∈ [p̄, 1] ,

where Ñ(p) = N/ḡ = N(p/g+ 1− p). Thus, solving for the equilibrium reduces to solving the fixed
point problem p = Fθ(AHOV-MBP(p)). This problem admits a unique solution, as illustrated in Fig.
9 and formalized hereafter.

Lemma 1. Let assumptions 1, 2, 3, 4, and 6 hold. Assume that the population has homogeneous
schedule preferences and that carpoolers benefit from a HOV-MBP scheme with SP ∈ (0, S). There
exists a unique equilibrium proportion of carpoolers p∗(SP). It is equal to Fθ(0) if p̄ ≤ Fθ(0), and it
belongs to (Fθ(0), p̄) otherwise.

Lemma 1 simply states that if the capacity allocated to priority users is large enough (such that
Fθ(0) < p̄), the critical user that is indifferent between carpooling and driving alone has a positive
carpooling inconvenience.

It is difficult to provide a more precise characterization of the equilibrium in the general case,
but some interesting results can be derived by assuming α− β − γ preferences and SP = S. Recall
from Section 4.2.1 that in this case, the reduced form cost function is simply C(τ) = δτ . The total
cost is then:

TC(p) = pNC

(
pN

gS

)
+ (1− p)NC

(
pN

gS
+

(1− p)N
S

)
+N

∫ p

0

θ(u) du

=
δN2

S

(
(1− p)2 +

p

g

)
+N

∫ p

0

θ(u) du. (13)

This is a sum of convex functions including one strictly convex component, (1 − p)2, so TC is
strictly convex as well and admits a unique minimum.
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In order to position the user equilibrium with respect to the proportion p minimizing the total
cost, let us examine the sign of dTC

dp at the user equilibrium. By differentiating Eq. (13):

dTC

dp
(p∗) =

δN2

S

(
−2(1− p∗) +

1

g

)
+Nθ(p∗)

=
δN2

S

(
p∗ −

(
1− 1

g

))
, (14)

where we rely on the equation θ(p∗) = δ(1 − p∗)N/S that derives from the User Equilibrium
condition. Eq. (14) implies that the proportion of users that carpool at equilibrium is optimal iff
p∗ = 1−g−1, which translates into a proportion of vehicles q∗ = p∗/(p∗+(1−p∗)g) = (g−1)/(2g−1).

Let us now analyze a few special cases. The limit case g = 1 corresponds to a situation where
“carpoolers” actually have the same average occupancy as other vehicles. In this case, the critical
value of p∗ is 0. This implies that these not-so-efficient “carpoolers”, if they exist, are always too
numerous at equilibrium. This is because the users that switch to carpooling impose a negative
externality on those that were already carpooling, without influencing the cost of non-prioritized
users. With g = 2, the critical value of p∗ is p∗ = 0.5, which corresponds to q∗ = 1/3. Thus, if we
assume that all carpools have two occupants and that users have homogeneous α−β−γ preferences,
we know that as long as carpools represent less than one third of all vehicles at equilibrium, the
total cost could be reduced by further encouraging carpooling. If the proportion of carpools is larger
however, too many vehicles are prioritized at equilibrium. This implies that the loss associated
to a poor compartmentalization outweigh those obtained from the reduced number of vehicles.
As g further increases, the critical value of p∗ tends towards 1 and that of q∗ towards 0.5. Thus,
regardless of the carpool occupancy, it is never optimal to have more than 50 % of priority vehicles
at a bottleneck with the HOV-MBP policy. In cases where this threshold would be exceeded, a
more stringent criteria for priority might be worth considering (e.g. a larger minimum vehicle
occupancy).

5.3.3 Comparison with static HOV lanes

Let pHOV-MBP(SP) denote the user equilibrium associated to the HOV-MBP policy. A similar fixed
point problem arises when carpoolers are provided with a static HOV lane of capacity SP. In that
case, the congestion advantage depends the carpooling proportion via

a = Astatic(p) =

{
C
(
N(1−p)
S−SP

)
− C

(
pN
gSP

)
, if p ∈ [0, p̄] ,

0, if p ∈ [p̄, 1] .

This problem also admits a unique solution, as stated hereafter.

Lemma 2. Let assumptions 1, 2, 3, 4, and 6 hold. Assume that the population has homogeneous
schedule preferences and that carpoolers benefit from a static reserved lane, of capacity SP ∈ (0, S).
There exists a unique equilibrium proportion of carpoolers pstatic(S

P). It is equal to Fθ(0) if
p̄ ≤ Fθ(0), and it belongs to (Fθ(0), p̄) otherwise.

Let us now compare the individual costs under these two schemes. Let CP
static(SP, p), CP

HOV-MBP(SP, p),
CNP

static(SP, p) and CNP
HOV-MBP(SP, p) denote the costs of priority and non-priority users with static

HOV lanes and HOV-MBP, when a proportion p of the population is carpooling.

Proposition 7. Let assumptions 1, 2, 3, 4, and 6 hold, and assume that the population has
homogeneous schedule preferences. For all SP ∈ (0, S),

pstatic(SP) ≥ pHOV-MBP(SP),

CP
static(SP, pstatic(SP)) ≥ CP

HOV-MBP(SP, pHOV-MBP(SP)),

CNP
static(SP, pstatic(SP)) ≥ CNP

HOV-MBP(SP, pHOV-MBP(SP)).

(15)

(16)

(17)

The proofs of Lemmas 1, 2 and Proposition 7 are relegated to Appendix C.
Proposition 7 confirms the superiority of the HOV-MBP scheme over its static counterpart and

in the process, highlights why HOV priority schemes should not be evaluated solely based on the
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Figure 10: Relative total cost savings and proportion of carpoolers with the HOV-MBP scheme
and static HOV lanes

Note: Results obtained with N such that Ñ/S = 2.5 h when the only carpoolers are the natural ones,
discrete times spanning over a 5-hour period centered around the mean t∗ (time step: 1 min).

modal split they generate, but also on the overall efficiency. Here, a larger proportion shifts to
carpooling under the static scheme than under HOV-MBP, but all users are weakly better-off under
HOV-MBP than under a static scheme.

5.4 Numerical Example

This case study replicates the same simulations as in Section 4.4, but with the HOV-MBP scheme
and a conventional static reserved lane. We analyze the consequences at the global and individual
levels, with both exogenous and endogenous mixes of vehicle occupancies.

Note that the previous analytical results establishing existence and uniqueness of equilibrium
costs under metering-based priority do not apply with both an endogenous mix and heterogeneous
schedule preferences. We believe that unique equilibrium costs still exist but we have not been able
to demonstrate it under these general assumptions. Yet, since all the simulations we ran numerically
converged (using the algorithms described in Appendix E), we leave aside this technical difficulty
and still present numerical results.

The carpool occupancy g is set to 2 and the proportion of natural carpoolers Fθ(0) to 1/3 in
the simulations hereafter. This corresponds to a proportion q0 = 20% of vehicles, in line with real
world observations for work trips (Federal Highway Administration 2017). More people may switch
to carpooling if the priority scheme offers a sufficiently large advantage. In general, the total modal
shift is determined by the slope fθ(0) = F ′θ(0), and by the higher order derivatives of Fθ at 0. We
discard here the higher-order effects by assuming a uniform distribution for θ. Given the constraint
Fθ(0) = 1/3, we only need one additional parameter to fully determine the distribution. We choose θ̄,
the mean carpooling inconvenience. The slope is then fθ(0) = (F (θ̄)−F (0))/(θ̄−0) = (1/2−1/3)/θ̄.
There are very few empirical estimates of the average carpooling inconvenience, but Small, Winston,
and Yan (2006) suggests that a realistic value is likely to be θ̄ = 0.5 h. In other words, half of
users would carpool if we could guarantee a travel time reduction of 30 min. Yet, the simulations
hereafter are replicated for various values of θ̄, ranging from 0.3 h (18 min) to infinity10 to account
for the uncertainty about the exact value of θ̄.

Figure 10 shows the relative total cost savings obtained under the HOV-MBP scheme and with
static HOV lanes. Note that the total cost is now a combination of queueing delays, schedule delays,
and carpooling inconveniences. With HOV-MBP, the relative total cost savings increases with SP

until it reaches a threshold. The value of %∆TC at this threshold and the smallest SP for which
it is first reached depend on the mean carpooling inconvenience θ̄. In this specific example, an
exogenous mix (θ̄ =∞) leads to %∆TC ' 29 % for SP/S ≥ 32 %, while the more realistic estimate
(θ̄ = 0.5 h) leads to %∆TC ' 42 % for SP/S ≥ 41 %. In comparison, the maximum cost savings
with the R-MBP scheme were 22 % for SP/S = 32 % and 27 % for SP/S = 41 %(see Fig 10a).

10The case θ̄ =∞ is characterized by Fθ(θ) = Fθ(0) for all θ > 0, i.e. an exogenous mix.
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Figure 11: Distribution of individual cost savings
Note: Results shown for the socially optimal HOV-MBP schemes and static HOV lanes from Fig. 10.

With static HOV lanes, the maximum relative total cost savings are much smaller, and are only
reached for a specific capacity split SP/S. This is problematic as static capacity splits can typically
only be chosen among a small set of fractions ({1/m, 2/m, ...(m− 1)/m}, where m is the number
of lanes). With θ̄ = 0.5 h, %∆TC reaches a maximum of 18% for (SP/S) ' 32%. This is not even
half the maximum cost savings achieved with HOV-MBP for the same θ̄. Static HOV lanes perform
particularly poorly when the average carpooling inconvenience θ̄ is large. With an exogenous mode
split (θ̄ =∞), static HOV lanes only reduce the total cost for (SP/S) ∈ [20%, 29%], and increase it
outside of this interval.

Let us now analyze the distributional consequences of HOV-MBP and static reserved lanes,
with the socially optimal preemtable/reserved capacities SP found in Fig. 10. Our analysis relies
on two figures. Fig. 11 shows the cumulative density functions of cost savings (including individual
carpooling inconveniences) for both schemes, while Fig. 12 shows the associated queueing times,
thereby facilitating the interpretation. Although user type is not displayed here to save space, some
information is relatively easy to infer from these two figures. First, note in Fig. 11 that there is
always a positive measure of users with exactly zero cost saving. These have a desired arrival time
out of the peak period both with and without the priority scheme (either HOV-MBP or static
lanes), and are thus indifferent. Then, one can clearly distinguish two other groups in Figs. 11a
and 11b, separated by a kink in the cumulative proportion (occurring between 60% and 70%).
The group of users above the kink (who thus represent about 30-40% of the population) are all
better-off and correspond to carpoolers while the group below (except those that are indifferent)
are all solo-drivers. One can verify that these proportions are in agreement with Fig. 10.

When the lane reservation is static, solo-drivers are all either worse-off or indifferent, depending
on whether they travel during the peak period or not. This is consistent with the corresponding
queueing times (NP) in Fig. 12b, which are systematically greater than (or equal to) those without
metering. A few solo-drivers are better-off with HOV-MBP and θ̄ =∞, because the boundaries of
the congested period on non-priority lanes are slightly shifted towards the early morning (hardly
visible in Fig. 12a). With HOV-MBP and θ̄ <∞ however, the modal shift reduces the total length
of the peak period for non-priority users, so that many (if not all) solo-drivers are better-off. While
the ordering effect already reduces drastically the loss/gain ratio (from 29% with R-MBP to 14.3%
with HOV-MBP and θ̄ =∞), the modal shift can reduce this ratio even further: it equals 2.4%
for θ̄ = 1 h, and reaches 0% for θ̄ = 0.5 h and 0.3 h. In these last cases, the addition of the
ordering and modal shift effects to the original compartmentalization effect is sufficient to restore a
Pareto-improvement (all users have non-negative cost savings).

In comparison, the loss/gain ratio is much larger with static HOV lanes. With the socially
optimal reserved capacity, it is equal to 66.8% for θ̄ = ∞, 54.4% for θ̄ = 1 h, 43.9% for θ̄ = 0.5
h and 29.3% for θ̄ = 0.3 h. These ratios are of the same magnitude as those obtained with the
R-MBP scheme, or even larger.

Note that the modal shift and absolute cost savings strongly depend on the initial congestion cost.
Here, the maximum congestion cost without metering-based priority is equivalent to approximately
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Figure 12: Queueing times
Note: Results shown for the socially optimal HOV-MBP schemes and static HOV lanes from Fig. 10.

18 min (0.3 h) of waiting time. This is a rather long recurrent delay for a single bottleneck, but it
is very reasonable if we consider all the congestion delays experienced over a trip during the peak
period.

6 Discussion

This paper examined the potential of metering-based priority to alleviate congestion in a socially
acceptable way. We have shown that the homogeneity hypothesis previously made in the literature
concealed the adverse effects of random priority schemes. With heterogeneous preferences, random
priority leaves many non-prioritized users worse off. The relative cost savings achieved by random
priority schemes are also affected by heterogeneity: they tend to decrease with heterogeneity in
flexibility, but may increase with heterogeneity in desired arrival times.

The drawbacks of priority schemes can be alleviated by prioritizing targeted users. Depending on
the chosen criterion, targeted priority may induce an additional ordering effect and/or a modal shift.
Both contribute to improving the acceptability of priority schemes: the ordering effect amplifies the
gains and reduces the losses, while the modal shift alleviates congestion for non-priority users. On
the other hand, targeted priority imposes a constraint on the proportion of the population that can
be prioritized, thereby restricting the total cost savings. We believe however that this is a mild
restriction compared to the gains it provides in terms of distributional consequences.

The range of situations in which MBP schemes could be implemented is quite large, but additional
network aspects need to be considered. It is known since Rogers (1985) that implementing metering
by-passes only at a few on-ramps of a highway leads solo-drivers to re-route towards other on-ramps.
The same phenomenon would most likely arise in cities, if priority schemes were to be implemented
at randomly chosen intersections. This is another argument in favor of combining MBP with other
metering strategies such as perimeter control (Ramezani, Haddad, and Geroliminis 2015), which
inherently control all the access points to a zone.

Another topic deserving further research is the identification of selection criteria that are not
only efficient and socially acceptable, but also easy to enforce. Vehicle occupancy is certainly a
strong candidate, but one may also consider discriminating vehicles based on their destination or
their trip length (as in Daganzo and Lehe 2015). Alternatively, transport authorities may choose to
prioritize low-emission modes, to combine operational benefits with environmental ones.

Depending on the chosen criterion, there might also be issues related to demand elasticity:
persons that do not utilize this bottleneck in the laissez-faire regime might start to do so when
they are prioritized. Although this is analytically difficult to quantify (see Fosgerau (2011) for
some first derivations), this effect might threaten the Pareto improvement. The consequences of
demand elasticity on the social cost are more ambiguous, in particular for cases like HOV-MBP.
The laissez-faire regime has the advantage of generating a self-selection, where those that travel
are also those who are ready to queue the most. This self-selection is however independent of the
individual contribution to congestion, and therefore suboptimal.
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If metering-based priority is actually based on vehicle occupancy, the matching process would
deserve to be refined to model the trade-off between the similarity of schedule preferences, affinity
between carpoolers and spatial considerations. This then points towards two other research
directions, as (i) the aggregation of carpoolers with different desired arrival times may induce a
concentration close to the peak (as in Picard, Dantan, and de Palma 2018) and (ii) detours caused
by carpooling may also contribute to congestion.
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A Existence of Equilibrium and Uniqueness of Equilibrium
Costs with a Bottleneck of Time-Varying Capacity

This appendix explains how existence and uniqueness results established for a bottleneck of constant
capacity can be transposed to the case with a time-varying capacity. Specifically, we consider the
case where Assumption 2 is replaced by the following reformulation.

Assumption 7. The bottleneck is accessible with a piece-wise continuous capacity S(t) > 0 during
a time interval T = (t0, te), such that

∫
T S(t) dt > Ñ and t∗j ∈ T ∀i = 1, . . . J .

A.1 Existence of Equilibrium

Two approaches compatible with our assumptions have been proposed in the literature: one by
Lindsey (2004), and another by Iryo and Yoshii (2007) and Akamatsu et al. (2018). We choose
to transpose the second, because it also provides the intuition behind the algorithms presented in
Appendix E. This section refers hereafter more specifically to the work of Akamatsu et al. (2018)
because it allows for a continuum of arrival times, unlike Iryo and Yoshii (2007).

The method proposed by Akamatsu et al. (2018) consists in identifying a set of arrival rate
functions (sj)j∈J (at destination) and a queueing time function T that satisfy the optimal choice
condition (A.1), the queueing condition (A.2) and that together, define departure rates (from the
origin) that are compatible with the FIFO condition and do not entail mass departures. With a
constant capacity S, the optimal choice and queueing conditions are the following:{

Cj = αT (t) + SPj(t) if sj(t) > 0

Cj ≤ αT (t) + SPj(t) if sj(t) = 0
∀j ∈ J , t ∈ T (A.1)

{∑J
j=1 sj(t) = S if T (t) > 0∑J
j=1 sj(t) ≤ S if T (t) = 0

∀t ∈ T . (A.2)

We follow the same approach here and leverage key results of Akamatsu et al. (2018) by
transposing the problem in a different time coordinate system.

Step 1. Starting from a problem with time-dependent capacity (as in Assumption 7), we define
the bijection t̃ = Φ(t), where:

Φ: R → R

t 7→
∫ t

0

S(τ) dτ .

The transformation Φ is such that the maximum number of passages at the bottleneck over any
interval [t̃1, t̃2] ⊂ Φ(T ) is t̃2 − t̃1, i.e. the bottleneck has capacity 1 in the time system t̃. The
cost functions of the different groups keep the same form, except that the schedule penalty is now

21



S̃Pj(t̃) = SPj(Φ
−1(t̃)). These functions inherit the continuity from the functions SPj and they are

minimized for t̃∗j = Φ(t∗j ). Only the condition on the rate of change (1) may not be inherited, but
this is addressed in step 3.

Step 2. After transposing the problem in the t̃ time system, one can directly apply the part of
the demonstration in Akamatsu et al. (2018) that shows the existence of functions (s̃j)j∈J and T̃

satisfying the conditions (A.1) and (A.2) (but with t̃, Φ(T ) and S̃Pj instead of t, T and SPj). This
is done by relating the departure time choice problem to the following optimal transport problem:

[2D-LP(s̃)] minimize
x ≥ 0

Z(x) =

J∑
j=1

∫
Φ(T )

S̃Pj(t̃)

α
s̃j(t̃) dt̃

subject to

J∑
j=1

s̃j(t̃) ≤ 1, ∀t̃ ∈ Φ(T ),∫
Φ(T )

s̃j(t̃) dt̃ = Nj , ∀j ∈ J .

(A.3a)

(A.3b)

(A.3c)

The optimal transport literature has established that provided that the functions S̃Pj are lower-
semicontinuous, optimal solutions exist (see e.g. Theorem 4.1 in Villani (2008), or Galichon (2016)).
Since continuity is a stronger property, optimal solutions exist here as well. Then, Akamatsu
et al. (2018) shows that if we take for T (t) and Cj the Lagrange multipliers of Eqs. (A.3b) and
(A.3c), the solutions of [2D − LP (s̃)] necessarily satisfy the optimal choice condition (A.1) and
the queueing condition (A.2) (again, with the variables and functions of the t̃ time system). If we
denote s̃j , C̃j and T̃ the solutions with the constant capacity bottleneck in the t̃ time system, it is
then straightforward to show that the functions defined in the original time system for all t ∈ T and
j ∈ J by sj(t) = S(t)s̃j(Φ

−1(t)) and T (t) = T̃ (Φ−1(t)) also satisfy the optimal choice condition

(A.1) with Cj = C̃j and the queueing condition (A.2), but with time-dependent capacity S(t).

Step 3. The last step is to verify that the resulting departure rates are consistent with the First-In,
First-Out condition and do not entail mass departures. Consider some group j ∈ {1, . . . , J} and
two times t1, t2 ∈ T such that t1 < t2, sj(t1) > 0 and sj(t2) > 0. The optimal choice condition
(A.1) imposes that Cj = αT (t1) + SPj(t1) = αT (t2) + SPj(t2). This can be rewritten

T (t2)− T (t1)

t2 − t1
= −SPj(t2)− SPj(t1)

α(t2 − t1)
,

such that condition (1) of Assumption 1 ensures that (T (t2) − T (t1))/(t2 − t1) > 1. Thus, the
departure time of users passing at t2 (i.e. t2 − T (t2)) is strictly smaller than the departure time of
users passing at t1 (i.e. t1 − T (t1)), which concludes.

A.2 Uniqueness of Equilibrium Costs

Lindsey (2004) already proved that equilibrium costs have to be unique with a bottleneck of constant
capacity. We revisit his proof hereafter with a time-dependent capacity.

The proof relies heavily on the concept of isocost curves. An isocost queueing time of a group i
is a function t 7→ Tj(t, Cj) , α−1(Cj − SPj(t)). It represents the time that users of group j passing
at time t should queue to experience the cost Ci. Letting C = (Cj)j∈J , the interactions between
different groups can then be captured with the following additional concept.

Definition 1. For any I ⊆ J , let t 7→ TI(t,C) , max(0,max{Tj(t, Cj), j ∈ I} be the upper
non-negative envelope of all the isocost curves belonging to groups of I.

At equilibrium, the bottleneck dynamics impose that:

1. the bottleneck should be used at capacity at all times such that TJ (t,C) > 0,

2. only the groups j such that Tj(t, Cj) = TJ (t,C) can pass at time t ∈ T .
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Together, these principles imply that for any I ⊂ J ,∫
T

[TI(t,C) > TJ\I(t,C)]S(t) dt ≤
∑
j∈I

Nj ≤
∫
T

[TI(t,C) ≥ TJ\I(t,C)]S(t) dt. (A.4)

We then proceed by contradiction and assume that there exist two distinct equilibrium cost
vectors C and C′. Assume without loss of generality that there exists j ∈ J such that Cj > C ′j
and let ∆ = max{α−1(Cj − C ′j), j ∈ J }.

The first step of the proof consists in showing that all groups actually have the same normalized
increase in cost, i.e. ∆ = α−1(Cj − C ′j) for all j ∈ J . By contradiction, assume that ∆ =

α−1(Cj − C ′j) only for j ∈ I ( J , and denote ∆′ = max{α−1(Cj − C ′j), j ∈ J \ I}. By applying
the left part of inequality (A.4) to C and the right part to C′, we obtain that∫

T
[TI(t,C) > TJ\I(t,C)]S(t) dt ≤

∑
j∈I

Nj ≤
∫
T

[TI(t,C′) ≥ TJ\I(t,C′)]S(t) dt. (A.5)

However,∫
T

[TI(t,C′) ≥ TJ\I(t,C′)]S(t) dt ≤
∫
T

[TI(t,C′ + ∆′) ≥ TJ\I(t,C′ + ∆′)]S(t) dt

≤
∫
T

[TI(t,C′ + ∆′) ≥ TJ\I(t,C)]S(t) dt

<

∫
T

[TI(t,C) ≥ TJ\I(t,C)]S(t) dt. (A.6)

The last inequality is strict because C ′j + ∆′ < Cj for all j ∈ I. Since the continuity of the
isocost curves is inherited by their envelopes, the set of times t ∈ T such that TJ\I(t,C) ∈
(TI(t,C′ + ∆′), TI(t,C)] has a positive measure. Thus, Eq. (A.6) contradicts Eq. (A.5).

A similar reasoning shows that the total population cannot keep the same size when all groups
have a normalized cost increase ∆. Indeed,

∫
T [TJ (t,C′) ≥ 0]S(t) dt <

∫
T [TJ (t,C′ + ∆) >

0]S(t) dt =
∫
T [TJ (t,C) > 0]S(t) dt, but applying Eq. (A.4) to all groups together implies that∫

T [TJ (t,C) > 0]S(t) dt ≤
∑
j∈I Nj ≤

∫
T [TJ (t,C′) ≥ 0]S(t) dt. Again, there is a contradiction.

B Individual Costs and Reduced Form Cost Function

B.1 Proof of Proposition 2

This section proves the expression of the individual costs stated in Proposition 2, in which metering-
based priority is applied to a population with homogeneous schedule preferences. We rely for this
on the following lemma, which provides an expression of the individual costs for a single population
(no priority scheme), with a possibly time-dependent capacity.

Lemma 3. Consider a problem satisfying Assumptions 1 and 7, but with a homogeneous population
(J = 1). In deterministic departure-time user equilibrium, the individual cost is

C̃(Ñ , S) = sup

{
c ∈ C |

∫
T

[SP(t) < c]S(t) dt ≤ Ñ
}

, (B.1)

where C denotes the image of T under SP.

Proof. Proof. Let s(t) denote the flow passing the bottleneck at time t. Equilibrium requires that
no user can be better-off by changing departure time. Thus, all times t such that SP(t) < C̃(Ñ , S)
must satisfy T (t) > 0, and therefore s(t) = S(t). By integrating over time and using the Iverson
bracket notation, we have that C̃(Ñ , S) must be part of the set

Z1 =

{
c ∈ R |

∫
T

[SP(t) < c]S(t) dt ≤ Ñ
}

.
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Similarly, since the queueing time T cannot be strictly negative, all times such that s(t) > 0
must satisfy SP(t) ≤ C̃(Ñ , S). By integrating over time, C̃(Ñ , S) must also be part of the set

Z2 =

{
c ∈ R |

∫
T

[SP(t) ≤ c]S(t) dt ≥ Ñ
}

.

Besides, by assumption 7, we can take t ∈ T such that s(t) < S(t), and therefore T (t) = 0 and
SP(t) ≥ C̃(Ñ , S). Since N > 0, we can find t′ such that s(t′) > 0 and therefore SP(t) ≤ C̃(Ñ , S).
Since SP is continuous over the closed interval defined by t and t′, we obtain that C̃(Ñ , S) ∈ C.

Let us now assume that we have c1 ∈ Z1 ∩ C, c2 ∈ C and c2 < c1. Clearly,∫
T

[SP(t) ≤ c2]S(t) dt =

∫
T

[SP(t) < c1]S(t) dt−
∫
T

[SP(t) ∈ (c2, c1)]S(t) dt.

Since c1 ∈ Z1,
∫
T [SP(t) < c1]S(t) dt ≤ Ñ , and since both c1 and c2 belong to C and D is

continuous,
∫
T [SP(t) ∈ (c2, c1)]S(t) dt > 0. Thus,

∫
T [SP(t) ≤ c2]S(t) dt < Ñ , i.e. c2 /∈ Z2. The

contrapositive is that all elements of Z2 ∩ C are greater than all elements of Z1 ∩ C. Since C̃(Ñ , S)
belongs to both, it is necessarily the supremum of Z1 ∩ C.

In the particular case where the capacity S(t) is constant, the individual cost C̃(Ñ , S) can be
rewritten as a function mapping a demand-to-capacity ratio τ = Ñ/S to a cost, as in Eq. (5). We
now have all the tools required to prove Proposition 2.

Since priority users do not compete with non-priority ones and experience a constant capacity
SP, their individual cost is simply CP = C(pÑ/SP). Non-priority users then compete among
themselves for the remaining time-dependent capacity, S − SP(t). Using Lemma 3, their individual
cost is

CNP = C̃((1− p)N,S − SP)

= sup

{
c ∈ C |

∫
T

[SP(t) < c]S dt−
∫
T

[SP(t) < c]SP(t) dt ≤ (1− p)Ñ
}

.

Since SP(t) > 0 ⇒ SP(t) ≤ CP and CP ≤ CNP,
∫
T [SP(t) < CNP]SP(t) dt =

∫
T S

P(t) dt = pÑ .
Thus,

CNP = sup

{
c ∈ C |

∫
T

[SP(t) < c]S dt ≤ Ñ
}

= C(Ñ/S).

B.2 Conditions for a Convex Reduced Form Cost Function

The general form of C(τ) provided by Eq. (5) implies that C is non-decreasing, but it is not very
intuitive. If we further assume that SP is strictly decreasing for t < t∗ and strictly increasing for
t > t∗, Eq. (5) reduces to ∫

T
[SP(t) ≤ C(Ñ/S)] dt = Ñ/S.

With the α− β − γ preferences introduced in Section 3.1, the solution to this equation is simply
C(τ) = δτ , where δ = βγ/(β + γ).

Let us now examine the conditions under which C is convex (or concave). To obtain some
intuition, we focus on a situation like the one illustrated in Fig. 13a, where SP is continuously
differentiable on (t0, t

∗) ∪ (t∗, te), with SP′(t) < 0 for early arrivals (t < t∗) and SP′(t) > 0 for late
arrivals (t > t∗).

In such a situation, the congested period at equilibrium always consists of a single interval (t1, t2).
If the demand is small enough for both t1 and t2 to be different from t0 and te, these bounds can
be defined as functions of the equilibrium cost c as the only times in (t0, t

∗) and (t∗, te) satisfying
SP(t1(c)) = SP(t2(c)) = c. Differentiating this with respect to c leads to t′1(c) = (SP′(t1))−1 and
t′2(c) = (SP′(t2))−1. Note also that C−1(c) = τ = t2(c)− t1(c). Combining these results leads to:

C ′(τ) =
[
C−1′(C(τ))

]−1

= [t′2(C(τ))− t′1(C(τ))]
−1

=
[(

SP′(t2(C(τ)))
)−1 −

(
SP′(t1(C(τ)))

)−1
]−1

.
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t [h]t∗

SP(t)

t1 t2
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(a) Schedule penalty function

C(τ)

τ [h]t2 − t1

c

(b) Reduced form cost function

Figure 13: A non-convex schedule penalty and its convex reduced cost function

If SP is convex (resp. concave) on both (t0, t
∗) and (t∗, te), the functions τ 7→ SP′(t2(C(τ)))

and τ 7→ −SP′(t1(C(τ))) are both positive and increasing (decreasing), so C ′ is also increasing
(decreasing) and C is therefore convex (concave). Yet, if one term is convex and the other concave
(as in Fig. 13a), it is still possible that the derivative of one always dominates the derivative of the
other, so that the overall function C is convex (as in Fig. 13b) or concave.

C Other Proofs

Proof. Proof of Proposition 3. Differentiating Eq. (7) with respect to q leads to

∂TC

∂q
(SP, q) = NC

(
qÑ

SP

)
+ qNC ′

(
qÑ

SP

)
−NC

(
Ñ

S

)
.

For all q ∈ (0, q̄], this is of the same sign as

1

q

∂TC

∂q
(SP, q) =

C
(
qÑ
SP

)
− C( ÑS )

q
+ C ′

(
qÑ

SP

)
.

The convexity of C implies that both
(
C(qÑ/SP)− C(Ñ/S)

)
q−1 and C ′(qÑ/SP) increase with

q, and so does their sum. Besides, ∂TC
∂q (SP, 0) = N(C(0) − C(Ñ/S)) < 0 and ∂TC

∂q (SP, q̄) =

q̄NC ′(Ñ/S) > 0. Thus, for any given SP, there exists a unique qo ∈ (0, q̄) minimizing q 7→ TC(SP, q)
and TC(SP, q) decreases with q on q ∈ [0, qo] and increases with q on q ∈ [qo, q̄].

Let us now focus on the case q = q̄/2. Recall that q̄/SP = 1/S. Thus,
(
C(q̄Ñ/(2SP))− C(Ñ/S)

)
(q̄/2)−1

represents the negative of the average slope of the function q 7→ C(qÑ/SP) between the points q̄/2

and q̄. The convexity of C imposes that
(
C(q̄Ñ/(2SP))− C(Ñ/S)

)
(q̄/2)−1 ≥ C ′(Ñ/(2S)). Thus,

∂TC
∂q

(
SP, q̄/2

)
≤ 0, and therefore (q̄/2) ∈ (0, qo].

Finally, the convexity of C also imposes that C(Ñ/(2S)) ≤ (C(0) + C(Ñ/S))/2 = C(Ñ/S)/2,
which means that TC(SP, qo) ≤ TC

(
SP, q̄/2

)
≤ q̄C(Ñ/S)/4+(1−q̄/2)C(Ñ/S) = (1− q̄/4)C(Ñ/S).

Thus, the maximum total cost savings is at least q̄/4.

Proof. Proof of Proposition 4. Part a) Note that with j = 1, the condition in Eq. (10) reduces to
(1−q)Ñ
S−SP ≤ qÑ

SP , which is incompatible with q < q̄. Thus, τNP
1 = qÑ+(1−q)Ñ

S = Ñ
S and CNP

1 = Cref
1 .

Part b) Let j ∈ {2, . . . J}. q ∈ (0, q̄) implies that (1− q)/(S − SP) > S. Thus, if

(1− q)
∑J
i=j Ñi

S − SP
≤ qÑ

SP
,

then τNP
j > (

∑J
i=j Ñj)/S = τj . Otherwise,

τNP
j =

qÑ + (1− q)
∑j
i=j Ñi

S
=
q
∑j−1
i=1 Ñi +

∑j
i=j Ñi

S
>

∑j
i=j Ñi

S
= τj .
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Since C is assumed strictly increasing, CNP
j =

∑j
i=1(ki − ki−1)C(τNP

i ) >
∑j
i=1(ki − ki−1)C(τi) =

Cref
j , ∀j > 1.

Part c) The result is straightforward for priority and non-priority users of group j = 1 (because
%CP

1 = %CP and %CNP
1 = %CNP) and it is a direct consequence of part a) for non-priority users of

the groups j = 2, . . . J (because %CNP
j > 1 and %CNP = 1). Only the priority users of the groups

j = 2, . . . J require some special care. There,

%CP
j =

∑j
i=1(ki − ki−1)C

(
q
(∑J

l=i Ñl

)
/SP

)
∑j
i=1(ki − ki−1)C

((∑J
l=i Ñl

)
/S
) .

Since C
((∑J

l=i Ñl

)
/S
)
> 0 for all i = 1, . . . j, this can be seen as the weighted average of the

j ratios
(
C
(
q
(∑J

l=i Ñl

)
/SP

))
/
(
C
((∑J

l=i Ñl

)
/S
))−1

. Since (qS/SP) ∈ (0, 1), the function

x 7→ C(qSx/SP)/C(x) is non-increasing for all x ≥ 0 and in particular:

C
(
q
(∑J

l=i Ñl

)
/SP

)
C
((∑J

l=i Ñl

)
/S
) ≥ C(qÑ/SP)

C(Ñ/S)
= %CP.

The relative cost %CP
j is thus the weighted average of terms that are all greater than or equal to

%CP.

Proof. Proof of Proposition 6. The number of priority vehicles in each group j ∈ J is the same with
both schemes. As a consequence, the individual gains ∆CP

j = Cref
j − CP

j and ∆CNP
j = Cref

j − CNP
j

experienced by priority and non-priority vehicles are also the same. Yet, the proportion of priority
users is equal to qg/ḡ with HOV-MBP, but only to q with R-MBP. Since ∆CP

j ≥ ∆CNP
j , we have

indeed ∑
j∈J

Nj(q∆C
P
j + (1− q)∆CNP

j ) ≤
∑
j∈J

Nj(q
g

ḡ
∆CP

j + (1− q g
ḡ

)∆CNP
j ),

i.e., after division of both sides by TCref, %∆TCR-MBP ≤ %∆TCHOV-MBP.
In the case with homogeneous users, the total costs savings reduce to Nq∆CP and Nq gḡ∆CP

j

respectively, and Eq. (11) follows directly.
In the case where flexibility is the only source of heterogeneity, all non-priority users have a cost

at least as large as without the priority scheme (∆CNP
j ≤ 0 for all j ∈ J ). Thus,

%∆TCR-MBP =

∑
j∈J Nj(q∆C

P
j + (1− q)∆CNP

j )

TCref

=
ḡ

g

∑
j∈J Nj(q

g
ḡ∆CP

j + g
ḡ (1− q)∆CNP

j )

TCref

≤ ḡ

g

∑
j∈J Nj(q

g
ḡ∆CP

j + (1− q gḡ )∆CNP
j )

TCref

=
ḡ

g
%∆TCHOV-MBP.

Proof. Proof of Lemma 1. Assumption 6 ensures that Fθ is continuous and strictly increasing
on [θ−, θ+]. On one hand, p → θ(p) is continuous and strictly increasing on [0, 1], from θ(0) =
θ− ≤ 0 to θ(1) = θ+ > 0. On the other, the function p 7→ AHOV-MBP(p) = CNP

HOV-MBP(SP, p) −
CP

HOV-MBP(SP, p) is continuous and decreases on [0, p̄] from AHOV-MBP(0) = C(N/S)−C(0) ≥ 0 to
AHOV-MBP(p̄) = 0, and then remains equal to 0 on [p̄, 1]. Thus, the function θ(p) and AHOV-MBP(p)
have a unique intersection p∗ ∈ [0, 1]. If p̄ ≤ Fθ(0), they intersect for p = Fθ(0). Else, they intersect
for p ∈ (Fθ(0), p̄).
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Proof. Proof of Lemma 2. The same reasoning applies as for the proof of Lemma 1, after noticing
that p 7→ Astatic(p) = CNP

static(S
P, p) − CP

static(S
P, p) is continuous and decreases on [0, 1], from

Astatic(0) = C(N/SP)− C(0) ≥ 0 to Astatic(1) = 0.

Proof. Proof of Proposition 7. Let SP ∈ (0, S). If p̄ ≤ Fθ(0), then pstatic = pHOV-MBP = Fθ(0), and
priority users have no advantage, so the desired results hold.

Let us now assume that p̄ > Fθ(0). As in Section 4.2.1, the static and dynamic schemes lead to
the same costs for priority users, i.e.

CP
HOV-MBP(SP, p) = CP

static(SP, p), ∀p ∈ [0, p̄], (C.1)

but the static scheme leads to a capacity under-utilization, and therefore CNP
HOV-MBP(SP, p) ≤

CNP
static(SP, p), for all p ∈ [0, p̄]. This establishes that

AHOV-MBP(p) ≤ Astatic(p), ∀p ∈ [0, p̄]. (C.2)

This applies in particular to pHOV-MBP, soAstatic(pHOV-MBP) ≥ AHOV-MBP(pHOV-MBP) = θ(pHOV-MBP).
As a consequence, Astatic(p) intersects θ(p) for p ≥ pHOV-MBP, which establishes Eq. (15).

Marshalling Eq. (15), Eq. (C.1) and the fact that CP
HOV-MBP is non-decreasing with re-

spect to p leads to Eq. (16). Then, since AHOV-MBP is also non-decreasing with respect to p,
AHOV-MBP(pHOV-MBP) ≤ AHOV-MBP(pstatic) ≤ Astatic(pstatic). Combining this with Eq. (16) leads
to Eq. (17).

D More complex carpooling models

Section 5.3 considers a very simple carpooling model, in which the carpooling inconvenience is
considered an individual-specific constant. This appendix reviews some alternative assumptions
proposed in the literature.

Many works distinguish carpool drivers from carpool passengers: drivers cover the vehicle-related
costs and incur an extra detouring cost to pick-up and drop-off passengers, while passengers incur
an access cost and/or a waiting time. As the inconvenience is larger for drivers, passengers are
often assumed to compensate the drivers financially, such that the generalized costs for carpool
drivers and passengers are equal at equilibrium (see e.g. Ma and Zhang 2017, Liu and Li 2017).
The distinction between carpool drivers and carpool passengers is then only relevant in terms of
cost components, not in terms of generalized cost.

One common assumption is that the value of time (VoT) for a given person may depend on
whether this person drives alone, or carpools. Two radically different assumptions have been made
in this regard. On one hand, Liu and Li (2017) assumes that carpooling generates an inconvenience
that is the sum of a component proportional to the distance and of another component proportional
to the time spent together with the other carpoolers, with different proportionality coefficients
for carpool drivers and carpool passengers. As Liu and Li (2017) does not model detours and
assumes a classic bottleneck model, this is equivalent to assuming that carpoolers have a constant
carpooling inconvenience, plus a larger value of time. On the other hand, Ma and Zhang (2017)
and Zhong et al. (2020) assume that carpool drivers keep the same VoT while carpool passengers
have a lower one, because they do not need to drive. The fact that the VoT of carpool passengers
is larger than that of solo drivers in Liu and Li (2017), but smaller in Ma and Zhang (2017) and
Zhong et al. (2020) highlights the lack of consensus and the need for more empirical observations.
A Stated-Preferences (SP) experiment recently conducted in France (Monchambert 2020) partially
supports the assumption of Liu and Li (2017): drivers were found to have a VoT that is 13 % larger
when they drive a carpool than when they drive alone.

Besides the influence of carpool on the VoT, various models have also been proposed for the costs
associated with passenger pick-up and/or drop-off. Ma and Zhang (2017) and Zhong et al. (2020)
consider a modeling framework somehow different from ours: they focus on expected carpooling
costs and on the expected number of carpool passengers, which is not necessarily an integer. The
cost of detours then varies with the proportion of the population that carpools, but this can be
considered as an effect of the use of expected values: the average carpooling detour increases because
drivers are more likely to pick-up carpool passengers, not because these passengers are further away
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(the length of the detour per additional passenger is assumed to be constant). The only study that
we are aware of that relaxes this assumption is Wang, Yang, and Zhu (2018). The authors consider
a mode choice problem including carpooling as an alternative and allow the length of detours to
vary with the number of carpool drivers and carpool passengers on the market. Specifically, they
prove the existence of a mode choice equilibrium by only requiring that the distance between a pair
of matched drivers and passengers satisfies two constraints: (i) it should remain between a lower
bound and an upper bound and (ii) its partial derivatives with respect to the number of carpool
drivers and the number of carpool passengers should be negative. In the example they consider,
this distance is assumed to be inversely proportional to the number of matched carpooling pairs. It
might be possible to test this assumption analytically and/or provide an alternative functional form.
Yet, it seems that the research community has mostly focused so far on how to implement such
sharing services (various matching algorithms have been proposed - see e.g. Agatz et al. (2012)),
rather than on evaluating how their performance varies with the total demand.

E Simulations

Except for a few specific cases (e.g. those from the sections 4.2 and 4.3), the DDUE cannot
be characterized exactly with both a continuum of users and continuous time. The alternative
presented here is to discretize time and to find the equilibrium by solving a finite-dimensional
version of the problem [2D-LP(s̃)] from Appendix A. The core algorithm in based on the approach
proposed by Iryo and Yoshii (2007), but it has been adapted to allow for a time-dependent capacity.
It is called by other programs to estimate the DDUE in various situations (without any priority
scheme, with R-MBP, with HOV-MBP and with static HOV lanes).

E.1 Core Algorithm: One Population, One Bottleneck

The core algorithm takes as inputs:

• a vector t of length nt of discrete times,

• a vector S of length nt with the capacity (in vehicles) of the bottleneck at each discrete time
(this requires multiplying the bottleneck capacity (in veh/h) by the width of each time slot),

• a vector Ñ = (Ñj)j∈J indicating the number of vehicles of each group,

• J normalized schedule penalty functions SPj/α.

It then relies on a commercial solver (Matlab’s dual-simplex) to find an optimal solution to the
following linear program:

minimize
xi,j ≥ 0

∑
j∈J

nt∑
i=1

SPj(ti)

α
xi,j

subject to
∑
j∈J

xi,j ≤ Si, ∀i = 1, . . . , nt,

nt∑
i=1

xi,j = Ñj , ∀j ∈ J .

(E.1a)

(E.1b)

(E.1c)

The algorithm returns as outputs the matrix xi,j of bottleneck departures, the Lagrange multipliers
of the demand constraints (E.1c), which correspond to the normalized costs of all groups and if
necessary, the Lagrange multipliers associated to the capacity constraints (E.1b), which correspond
to the queueing times.

E.2 Metering-Based Priority and Static HOV Lanes - Exogenous Mix

Given some partition of the population between priority and non-priority and some capacity SP, the
cases with R-MBP, HOV-MBP and static HOV lanes can be solved by running the core algorithm
separately for priority and non-priority vehicles.
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With static HOV lanes, the two sub-equilibria can be computed either sequentially or in
parallel, because each population has access to pre-determined capacity. If the difference between
any two consecutive values of t is δt, the vector of capacities is defined for priority vehicles by
Si = SPδt,∀i = 1, . . . , nt and for non-priority vehicles by Si = (S − SP)δt,∀i = 1, . . . , nt.

With R-MBP and HOV-MBP, the core algorithm must be run first for priority vehicles with
Si = SPδt,∀i = 1, . . . , nt. Once the results are known, the core algorithm can be run for non-priority
ones, with Si = Sδt−

∑
j∈J x

P
i,j , where (xP

i,j)i=1,...,nt, j∈J are the priority arrivals obtained earlier.

E.3 Metering-Based Priority and Static HOV Lanes - Endogenous Mix

When the partition of the population between priority and NP is endogenous, a variant of the
Method of Successive Averages (MSA) is utilized (Algorithm 1). Every iteration starts with a

Algorithm 1 Endogenous mix (MSA)

P = Fθ(0)× 11×J . Initial proportion of carpoolers
for iteration = 1 . . .maxIterations do

ÑP = N ◦P/g . (N ◦P)i = NiPi (Hadamard product)
ÑNP = N ◦ (1−P)
[CP,CNP]=computeEquilibrium(t, (SPj)j∈J , Ñ

P, ÑNP, SP, S)
targetP= Fθ(C

P −CNP)
P = witerationtargetP + (1− witeration)P

end for

vector P indicating the proportion of carpoolers in each group j ∈ J (at the beginning of the
first iteration, the only carpoolers are the natural ones). After translating these proportions into
numbers of priority and non-priority vehicles, the departure-time equilibria are determined using the
function computeEquilibrium, using one of the procedures described in Section E.2. The resulting
departure-time equilibria are used to estimate the congestion advantage that each group enjoys
when carpooling, so that a target vector targetP can be computed. To improve stability, the
vector P utilized in the next iteration is a weighted average of this target and of the previous value.
After sufficiently many iterations, the procedure should converge towards a simultaneous mode and
departure time equilibrium. Here, after some trial and error, we used 15 iterations and a weight
function witeration = 1/

√
iteration.
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