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Abstract

This paper uses data from the 2004 pre-election survey of the American National Election
Study to test empirically different ways of incorporating a valence parameter into a Downsian
utility function. We call particular attention to the problem of interpersonal incomparability
of responses to the liberal-conservative scale, and use the Aldrich-McKelvey’s pathbreaking
method to obtain accurate distances between respondents and candidates, the key regressors.
We find that the utility function the most supported by the empirical evidence, the intensity
valence utility function, is the one which permits to make the better predictions for the 2004
presidential election. We also consider counterfactual analyses wherein we test if Bush, the
candidate with the highest intensity valence, has dominant strategies which would have insured
him to obtain a majority of the popular vote. According to the theory, it is known that the
candidate with the highest intensity valence does not have such dominant strategies if the
distribution of voters in the policy space is too heterogenous. Nevertheless, we show the
distribution of voters in 2004 is sufficiently homogenous for Bush to have dominant strategies.
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1 Introduction

Since Downs (1957), the spatial theory of voting has predominated in formal political science.

Such a theory fails to take into account that candidates often possess valence characteristics, i.e.,

characteristics unrelated to policy selection and unanimously evaluated by voters (e.g., charisma,

office-holding experience). Thus, to add realism into the spatial model, various authors have

included an additive valence into the Downsian utility function and explored its implications

(e.g., Groseclose, 2001, Hummel, 2010). But alternative ways of introducing a valence parameter

exist (e.g., Gouret and Rossignol, 2019, Kartik and McAfee, 2007, Section IV.C.). Ideally, one

would like to know if one of these theoretical utility functions is supported by the empirical

evidence using pre-election surveys. It is appealing for at least two reasons. First, if a theoretical

utility function is empirically founded, one can use it to make a priori better predictions for the

election considered. Second, one can use it to make counterfactual analyses. For instance, one

can test statistically if a candidate may propose an alternative policy which would have insured

him to win for sure. However, few papers have tested statistically the best way to model valence,

i.e., how to introduce the valence parameter into a utility function. One exception is Gouret et al.

(2011) who use a pre-election survey in the French presidential election of 2007; but they do not

make any prediction nor any counterfactual analysis.

Furthermore, a key problem to test these utility functions and make predictions or coun-

terfactual analyses is the problem of interpersonal incomparability of responses to issue scales.

Indeed, to compute the distances between respondents and candidates (the crucial regressors), it

is natural to use survey items which ask respondents to place themselves and candidates on issue

scales –typically a liberal-conservative scale. The prevalent practice in most empirical studies is

to take these responses at face value. However, and for example, a conservative voter may place a
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liberal candidate more on the left than do liberal voters to exaggerate the distance between him

and this candidate he views unfavorably. If so, taking these responses at face value might bias

the computed distances and the final results.

This paper takes this problem of interpersonal incomparability seriously, and uses pre-election

data from the American National Election Study (ANES) to test empirically the different ways

of incorporating a valence parameter into the Downsian utility function. Then, we show that the

utility function the most supported by the empirical evidence permits to make better predictions

for the election considered. We also consider counterfactual analyses wherein we test if one

candidate has dominant strategies which would have insured him to obtain a majority of the

popular vote.

We exploit the Aldrich and McKelvey’s (1977) seminal contribution to solve the problem of

interpersonal incomparability of responses. Their idea to recover the underlying locations of

the candidates and respondents in a common policy space is to treat the reported positions of

candidates by a respondent as linear distortions of the true locations of the candidates. The

solution is equivalent to a principal components solution for the true locations of candidates,

together with least squares estimate of each respondent’s distortion parameters. Then, the true

locations of the candidates and the bliss points of the respondents are used to compute accurate

distances, test different utility functions, make predictions, and conduct counterfactual analyses.

We test three theoretical utility functions: (1) the basic Downsian utility function; (2) the

additive valence utility function which has been widely studied in the literature; (3) lastly, the

intensity valence utility function studied formally by Gouret and Rossignol (2019) and proposed

initially by Gouret et al. (2011); see also Kartik and McAfee (2007, Section IV.C.) for a close

idea. The intensity valence assumes that all voters agree that one candidate has more ability

to implement his announced policy than his opponents. However, and in contrast with the (2)
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additive valence, the intensity valence has a different impact on the utility of voters according to

their position in the policy space. If a candidate is more efficient at implementing his announced

policy, it will increase the utility of voters whose bliss points are near this policy, but decrease the

utility of those who are too far. For instance, if a conservative policy is implemented, a liberal

voter does not want this policy to be implemented intensively.

To test these three theoretical utility functions, we formulate a statistical model which is

a system of regression equations. The number of equations in the system is the number of

candidates, given that each equation represents the utility if a specific candidate is elected. The

different theoretical utility functions imply different testable cross-equation parameter restrictions

on the statistical model. Subsection 2.2 presents the method and shows that the Downsian and

the additive valence utility functions have testable implications if there are at least two candidates.

Nevertheless, this is not the case for the intensity valence utility function: with two candidates,

the statistical model would exactly identify the unknown parameters of the intensity valence

utility function. To overidentify and thus place testable restrictions on the statistical model, it is

necessary to have at least three candidates.

This is the reason why we use data drawn from the 2004 pre-election survey of the ANES.

The 2004 survey is the last survey wherein respondents were asked to rate on a 100-point scale

their affect toward the three main Presidential candidates: the Democratic Presidential candi-

date John Kerry, the Republican Presidential candidate George W. Bush and the Independent

Presidential candidate Ralph Nader.1 Thus, the regressands of the econometric specifications are

feeling thermometers rather than stated choices. Feeling thermometers are more likely to produce

unbiased estimates of the parameters of the utility functions, given that strategic voting might

1Since the presidential election of 2008, the ANES has asked respondents to rate only the two main Presi-
dential candidates, i.e., the Democrat and the Republican. The ANES provides on its website a questionnaire
utility which lists the years in which a question has appeared. The information concerning the thermome-
ter questions for the candidates are lines 80, 81 and 82 (Part II “Candidate and incumbent evaluations”); see
http://isr-anesweb.isr.umich.edu/_ANESweb/utilities/questutility/all.htm.
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occur with three candidates.2

We find that the intensity valence utility function is the sole utility function which is supported

by the empirical evidence. Then, using the estimated parameters of this utility function, the

location of the candidates and the distribution of voters in the policy space, we study the source

of support for each candidate according to this model. Under the assumption that all the voters

who prefer Nader vote strategically, as well as under the assumption that all the voters who prefer

Nader vote sincerely, the relative frequencies of vote obtained via the intensity valence model for

Bush (51.8 and 50.9 percent, respectively) fit well with reality, given that Bush won the popular

vote with 50.73 percent; these results outperform those obtained with the Downsian and the

additive valence models. We also study if one candidate has dominant strategies which would

have insured him to obtain the majority of the popular vote. Bush is the candidate with the

highest intensity valence, but nothing insures theoretically that he has such dominant strategies.

Indeed, Gouret and Rossignol (2019) have shown that a low intensity valence candidate may have

dominant strategies which insure him to obtain the majority if the distribution of voters in the

policy space is too heterogenous. Nevertheless, the distribution of voters in 2004 is sufficiently

homogenous for Bush to have dominant strategies which are statistically significant, at least under

the assumption that all the voters who would have preferred Nader vote strategically.

Various authors have the same objective as ours: they try to obtain a realistic extended

Downsian utility function to make prediction, and that this utility function remains parsimo-

nious enough to understand its theoretical implications (e.g., Adams et al., 2005, Degan, 2007,

Schofield et al., 2011). But they consider an additive valence, and do not test statistically if there

is a better way to introduce a valence parameter in a utility function.3 Furthermore, although

2A voter votes sincerely when he votes for his most preferred candidate. Conversely, he votes strategically when
he decides to vote for his second most preferred candidate because his most preferred one is unlikely to win.

3For instance, using stated voting behaviors, Schofield et al. (2011, pp.485-486) estimate mixed logit wherein the
intercept term associated to one candidate measures his additive valence. Interestingly, they also add party-leader
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the problem of interpersonal incomparability of responses to issue scales has been widely recog-

nized since Aldrich and McKelvey (1977), and that their solution is used (e.g., Hollibaugh et al.,

2013, Armstrong II et al., 2014), empirical work on valence usually does not deal with this prob-

lem.4 For Adams et al. (2005, p.27), one question is “whether to use voter-specific placements of

candidates or mean placements when computing the distance”. But Armstrong II et al. (2014,

p.43) note that using the mean placement of each candidate is not a solution either; it is prone

to failure since errors are unlikely to cancel out in case of heteroskedasticity. On the contrary,

Palfrey and Poole (1987) show via Monte Carlo simulations that the Aldrich-McKelvey method

permits to recover an accurate location of the candidates, even with high heteroskedasticity.5

We arrange our presentation in the following way. Section 2 recalls the theoretical utility

functions that will be tested and explains how to estimate and test them. Section 3 describes

the 2004 pre-election survey of the ANES, shows that respondents answer the liberal-conservative

scale differently, and uses an Aldrich-McKelvey correction to solve this problem. Section 4 tests

the different utility functions considered. Section 5 uses the results to study the support for each

candidate according to the intensity valence model, compares the results with the other models,

and tests if Bush has dominant strategies which would have insured him to obtain a majority of

the popular vote. Following all of this, Section 6 concludes. Some additional results are relegated

to various appendixes.

trait indices which reflect valence factors in some specifications.
4Degan (2007) is a notable exception. Analyzing the 1968 and 1972 U.S. Presidential elections, she uses the

first dimension of the DW-NOMINATE scores in the Senate as an accurate measure of candidates’ positions on a
liberal-conservative scale. Concerning voters’ positions, she estimates a parametric distribution of their positions
(rather than point estimates of individual positions) using stated choices and voters’ characteristics.

5There are also some empirical studies which do not estimate the parameters of the utility function of voters
to make predictions and/or counterfactual analyses as we do. They propose some estimations wherein diver-
gence between candidates or from the median voter is explained by some proxies for valence advantage. Incum-
bency has been a standard (e.g., Burden, 2004, Ansolabehere et al., 2001). More recently, Adams et al. (2011) and
Stone and Simas (2010) use district expert informants in the 2006 House elections to distinguish between valence
which reflects campaign skills or fundraising ability and valence that voters value for their own sake (competence,
integrity). These papers do not consider the problem of interpersonal incomparability of responses. One exception
is Zakharova and Warwick (2014). Using data from the Comparative Study of Electoral Systems, they show in
particular that individuals’ valence judgements depend negatively on the distance between them and the parties.
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2 Existing utility functions and econometric models

Subsection 2.1 describes the utility functions that will be tested and recalls additional literature

on valence. Subsection 2.2 explains how to estimate and test them.

2.1 Theoretical utility functions

We consider an election between M candidates indexed by j = 1, ...,M . Each candidate j

proposes a policy platform xj in the unidimensional policy space R. Each voter i has a bliss point

ai ∈ R in this policy space. In this basic setting, we are interested in three theoretical utility

functions.

The Downsian utility function, the simplest one, considers that the utility of voter i if

candidate j is elected is given by:

U(ai, xj) = − |xj − ai| (1)

That is, the utility of voter i is a decreasing function of the distance between xj and ai. Note

that Equation (1) assumes that the utility is linear in distance. Various authors consider a

quadratic utility, specified as the negative of the squared distance between xj and ai (i.e.,

U(ai, xj) = − (xj − ai)
2). In Subsection 4.3, we will try to distinguish empirically whether a

linear distance, a squared distance, or another power function of distance, better represents vot-

ers’ relative evaluations of candidates. Considering for the moment a utility linear in distance is

enough to understand the difference between the different utility functions considered.

The additive valence utility function adds a candidate-specific parameter δj ∈ R to the

Downsian utility function:

U(ai, xj , δj) = δj − |xj − ai| (2)
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If δj > δj′ , candidate j has an additive-valence advantage over candidate j′. As shown in Panel

(A) of Figure 1, a higher additive valence δj adds the same amount of utility to all voters what-

ever their bliss point in the policy space. The voter whose bliss point is ai = xj obtains the

highest level of utility. Various authors have tried to understand the consequences of this sim-

ple extension of the Downsian utility function (Ansolabehere and Snyder, 2000, Groseclose, 2001,

Dix and Santore, 2002, Aragones and Palfrey, 2002, Evrenk, 2009, Hummel, 2010, Xefteris, 2012,

Aragonès and Xefteris, 2012, Xefteris, 2014); see Evrenk (2019) for a review of the literature.6

a

Utility

xj

δj

U(a, xj , δj)

U(a, xj)

(A) Additive valence

Utility

axj

λjK

U(a, xj , λj ,K)

xj +Kxj −K

(B) Intensity valence

Figure 1: Additive and intensity valence

The intensity valence utility function has been analyzed formally by Gouret and Rossignol

(2019) and proposed initially by Gouret et al. (2011) based on a French pre-election survey. The

intensity valence supposes that the valence represents the ability of a candidate for implementing

a policy. All voters may agree that one candidate will implement more intensively a policy than

an opponent, but may be affected differently. A candidate who is more efficient at implementing

6Note that several papers also consider an additive valence, but this valence parameter is not fixed. They
assume that it depends on campaign spending or a costly effort from the part of a candidate (see, e.g.,
Ashworth and Bueno de Mesquita, 2009, Carrillo and Castanheira, 2008).
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a policy will increase the utility of voters whose bliss points are near this policy, but decrease the

utility of those who are too far. More formally, if the distance between voter i’s bliss point ai

and candidate j’s platform xj is less than K ∈ R∗
+, i.e., |xj − ai| < K, and candidate j is elected,

then the higher the intensity valence parameter λj ∈ R∗
+ of candidate j, the higher the utility of

voter i. However, if the distance between ai and xj is higher than K, i.e., |xj − ai| > K, then the

higher the intensity valence parameter λj , the lower the utility of voter i, as shown in Panel (B)

of Figure 1. The intensity valence utility function is then:

U(ai, xj , λj ,K) = λj(K − |xj − ai|) (3)

Contrary to the additive valence utility function, the intensity valence utility function is not ad-

ditively separable in distance and valence. A close idea has been proposed by Kartik and McAfee

(2007) who investigate the effect of “character”. Such a character is similar to an (ex-ante un-

certain) additive valence in most of their article, but they highlight at the end of it (Subsection

IV.C., p.863) that a preference weight on character may depend on both the platform and a voter

bliss point: “a voter with ideal point [ai = 1] may prefer a candidate with platform [xj = 0] not

to have character [...] [T]he same voter may prefer a candidate with [xj = 1] to in fact have char-

acter.” More generally, the intensity valence utility function is linked to what Krasa and Polborn

(2012) call non-uniform candidate ranking (non-UCR) preferences.7 Krasa and Polborn (2010),

Soubeyran (2009) and Câmara (2012) are some of the few papers wherein competence differentials

between candidates give rise to non-UCR preferences, like the intensity valence utility function.

However, they assume that their utility functions satisfy the well-known single-crossing property,

7If both candidates propose the same policy x, but voter i prefers one candidate because of his characteristics
(which may include valence), then voter i has UCR preferences if he also prefers the same candidate when both
propose the alternative policy x′. Contrary to the additive valence, the intensity valence violates the UCR-property,
as can be shown in Figure 1.
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while the intensity valence utility function does not. Indeed, with the intensity valence, the set

of voters who prefer the candidate with the lowest intensity valence is always a non-convex set:

the candidate with the lowest intensity valence is supported by voters whose ideal points are on

both sides of the policy space, as shown in Panel (B) of Figure 1.8

2.2 Econometric models

To test the hypotheses of the three utility functions presented in Subsection 2.1, we formulate

a seemingly unrelated regressions (SUR) model that contains these hypotheses as restrictions on

its parameters.

Consider a survey of N voters, i = 1, ..., N , representative of the electorate of an election.

Recall that M candidates, j = 1, ...,M , compete at this election. In the survey, each voter i is

asked to rate his felicity Ui,j toward each Presidential candidate j. As we will show in Section 3,

the survey also permits to obtain each voter i’s bliss point ai, as well as the actual location xj of

each candidate j. Stacking all M utilities for the ith voter, we get:




Ui,1

Ui,2

...

Ui,M




=




δ1

δ2

...

δM




−




di,1 0 · · · 0

0 di,2 · · · 0

...

0 0 · · · di,M







λ1

λ2

...

λM




+




εi,1

εi,2

...

εi,M




(4)

where di,j = |xj−ai| and εi,j is an error term. TheM pairs of parameters {(δ1, λ1), . . . , (δM , λM )}

could be estimated separately by ordinary least squares (OLS) using theN observations. However,

the three utility functions that we will test impose some cross-equation restrictions on the system

8Note that the intensity valence model is not the sole model which predicts that the set of voters who support
a candidate with less ability is a non-convex set. For example, Miller (2011) proposes a model which combines an
additive valence and the candidate’s likelihood of changing policy from an exogenous status quo. If the candidate
the less able to change the status quo is additive-valence-advantaged, then the set of voters who prefer this candidate
is a non-convex set.
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of equations (4). Imposing cross-equation constraints is not possible using equation-by-equation

OLS, but it is possible using SUR estimation.

As it is standard in SUR models, for a given voter i, the errors may be correlated across

equations; that is, E
[
εi,jεi′,j′

]
= σjj′ if i = i′ and 0 otherwise. It makes sense here: for example,

the utility that a liberal voter will obtain with a liberal candidate give some information about

the utility that he will obtain with a conservative candidate.

The three theoretical utility functions that we will test impose some cross-equation restrictions

on the SUR model (4). One should have in mind that according to economic theory, the different

utility functions considered are unique up to positive affine transformations. The Downsian utility

function U(ai, xj) = − |xj − ai| is equivalent to U(ai, xj) = δ − λ |xj − ai| for some scalar δ and

some scalar λ > 0 independent of i and j.9 The values of these scaling parameters δ and λ will

depend on the scales used in the questions of the survey; for instance, the regressands measure

the felicities toward various candidates on a 100-point scale. Thus, the Downsian utility function

implies the following testable restrictions on the unconstrained model (4):

H0 : λj = λ ,∀j, and δj = δ ,∀j (5)

Concerning the additive valence utility function, and following a similar argument, the additive

parameter δj is candidate-specific, while the slope coefficient λ is not. Thus, the additive valence

implies the following testable restrictions on the unconstrained model (4):

H0 : λj = λ ,∀j (6)

9Indeed, and without loss of generality, consider that there are two candidates, j = 1, 2. If the utility function
of voter i if candidate j is elected is the Downsian utility function U(ai, xj) = −|xj − ai|, then voter i strictly
prefers candidate 1 if −|x1 − ai| > −|x2 − ai| ⇔ |x1 − ai| < |x2 − ai|. Now if the utility function of voter i

if candidate j is elected is U(ai, xj) = δ − λ |xj − ai|, with λ > 0, then voter i strictly prefers candidate 1 if
δ − λ |x1 − ai| > δ − λ |x2 − ai| ⇔ |x1 − ai| < |x2 − ai|.
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Lastly, the intensity valence utility function U(ai, xj , λj ,K) = λj(K − |xj − ai|) is equivalent to

U(ai, xj , λj ,K) = c + λj(K − |xj − ai|) for some scalar c independent of i and j; again, c is a

scaling parameter which depends on the scales used in the questions of the survey. The intensity

valence implies the following testable restriction on the unconstrained model (4):

H0 : δj = λjK + c ,∀j (7)

It is prudent to emphasize that there is a minimal number of candidates (i.e., a minimal

number of equations) to have testable implications on the unconstrained model (4). It is obvious

that the Downsian and the additive models imply testable restrictions on the unconstrained model

if there are at least two candidates (M ≥ 2). However, the intensity valence model has no testable

implication if M = 2. The reason is that if M = 2, the parameters of the unconstrained model

would exactly identify the parameters of the intensity valence model. To see that, consider that

the parameters of the unconstrained model {(δ1, λ1), (δ2, λ2)} are known. Then, we can recover

the underlying parameters of the intensity valence model if λ1 6= λ2.
10 The parameters λ1 and λ2

of the unconstrained model give the intensity valence indices. And, according to the restriction

(7), δ1 = λ1K+c and δ2 = λ2K+c, so K = δ1−δ2
λ1−λ2

and c = δ1−
λ1(δ1−δ2)
λ1−λ2

= δ2−
λ2(δ1−δ2)
λ1−λ2

.11 Thus,

the underlying parameters of the intensity valence model are exactly identified in terms of the

parameters of the unconstrained model. Hence, the intensity valence model implies no testable

restriction on the unconstrained model when M = 2.

Now, if M = 3, the restriction (7) on the unconstrained model can be rewritten in terms of the

10If λ1 = λ2, the intensity valence utility function has no candidate-specific parameter, so it becomes equivalent
to the Downsian utility function, as one can see in Equations (1) and (3); hence, it makes no sense to try to recover
the other intensity valence parameters K and c when λ1 = λ2. Furthermore, if λ1 = λ2, it is in fact impossible to
recover K and c in terms of the parameters of the unconstrained model as one can easily see below.

11The second equality δ1 −
λ1(δ1−δ2)

λ1−λ2

= δ2 −
λ2(δ1−δ2)

λ1−λ2

is easy to verify: by multiplying each side by (λ1 −λ2), we
obtain −δ1λ2 + δ2λ1 = δ2λ1 − δ1λ2.
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parameters of the unconstrained model as H0 : δ1 =
δ2(λ1−λ3)+δ3(λ2−λ1)

λ2−λ3
. So the intensity valence

implies one testable restriction on the unconstrained model. To see why, note that according

to the restriction (7), δ1 = λ1K + c, δ2 = λ2K + c and δ3 = λ3K + c. Hence, we should

have K = δ1−δ2
λ1−λ2

, as well as K = δ1−δ3
λ1−λ3

and K = δ2−δ3
λ2−λ3

. We thus have a priori three testable

restrictions: (i.) δ1−δ2
λ1−λ2

= δ1−δ3
λ1−λ3

; (ii.) δ1−δ2
λ1−λ2

= δ2−δ3
λ2−λ3

; (iii.) δ2−δ3
λ2−λ3

= δ1−δ3
λ1−λ3

. Note that (i.)

δ1−δ2
λ1−λ2

= δ1−δ3
λ1−λ3

⇔ δ1 = δ2(λ1−λ3)+δ3(λ2−λ1)
λ2−λ3

; this is how H0 has been stated above. It is easy to

show that this equivalence is also true for (ii.) and (iii.), so the restrictions (ii.) and (iii.) are

redundant.

3 The data

The data used in this paper are drawn from the 2004 pre-election ANES. This survey was con-

ducted by the Survey Research Center of the University of Michigan’s Institute for Social Research.

It began on September 7, 2004 and ended November 1, 2004. No interviewing was conducted on

Presidential Election Day, November 2, 2004. The sample was structured to be representative

of the electorate. 1212 respondents were interviewed. Each respondent i was asked three key

questions for our analysis. First, each respondent i was asked to rate his affect toward Kerry

(Ui,k), Nader (Ui,n) and Bush (Ui,b).
12 These feeling thermometers are sometimes considered as

12The interviewer first said:

I’d like to get your feelings toward some of our political leaders and other people who are in the news
these days. I’ll read the name of a person and I’d like you to rate that person using something we call
the feeling thermometer. Ratings between 50 degrees and 100 degrees mean that you feel favorable
and warm toward the person. Ratings between 0 degrees and 50 degrees mean that you don’t feel
favorable toward the person and that you don’t care too much for that person. You would rate the
person at the 50 degree mark if you don’t feel particularly warm or cold toward the person. If we
come to a person whose name you don’t recognize, you don’t need to rate that person. Just tell me
and we’ll move on to the next one.

At the same time, the survey also made use of a respondent booklet and showed a 0-100 degree scale indicating
in addition the meaning of 15, 30, 40, 60, 70 and 85 degrees. Then, the interviewer asked respondent i to rate his
affect toward the three main Presidential candidates. For instance, for John Kerry, the question was:

How would you rate JOHN KERRY?
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the best available measures of voters’ utility from political alternatives (e.g., Armstrong II et al.,

2014, p.147). They will be the regressands of the systems of equations described in Section 2.2.

Second, each respondent i was asked his placement ãi on a 7-point scale wherein the political

views were arranged from extremely liberal (1) to extremely conservative (7).13 Finally, each

respondent i was also asked to place Kerry (x̃i,r), Nader (x̃i,n) and Bush (x̃i,b) on this 7-point

liberal-conservative scale.14 The Original sample in Table 1 provides descriptive statistics of the

responses to these different questions. Some observations are missing because some respondents

refused to answer some questions, or they provided unsuitable answers (e.g., they said that they

“Haven’t thought much” or provided a “Don’t know” to the self-placement question). In order to

generate the estimation sample (called the Final sample in Table 1), observations where either one

of the thermometer scores (Ui,k, Ui,n or Ui,b), the self-placement (ãi), or the perceived location of

one of the candidate (x̃i,r, x̃i,n or x̃i,b) are missing are dropped. It reduces the sample size to 607.

Furthermore, 5 additional observations are excluded. Anticipating on Subsection 3.2, the reason is

that these 5 respondents locate Kerry, Nader and Bush at the same place (i.e., x̃i,r = x̃i,n = x̃i,b).

This absence of variability in the perceived location of the three candidates makes it impossible to

estimate the Aldrich-McKelvey distortion parameters for these respondents (denoted ci and wi in

Subsection 3.2); without these distortion parameters, it is impossible to obtain these respondents’

bliss points in the same policy space as the actual locations of the candidates, and then compute

13The wording of the question was as follows:

We hear a lot of talk these days about liberals and conservatives. Here is a seven-point scale on
which the political views that people might hold are arranged from extremely liberal to extremely
conservative. Where would you place YOURSELF on this scale, or haven’t you thought much about
this? [1] Extremely liberal, [2] Liberal, [3] Slightly liberal, [4] Moderate/middle of the road, [5]
Slightly conservative, [6] Conservative, [7] Extremely conservative, [80] Haven’t thought much, [88]
Don’t know, [89] Refused.

14The questions concerning the locations of the candidates followed the self-placement question. As an example,
the wording for Bush was as follows:

Where would you place GEORGE W. BUSH on this scale?
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accurate distances. Thus, the Final sample is composed of 602 respondents.

Table 1: Descriptive statistics

Original sample Final sample

Variable Obs. Mean Std.Dev. Median Min Max Obs. Mean Std.Dev. Median Min Max

Ui,k 1191 53.019 26.360 60 0 100 602 51.612 26.729 60 0 100
Ui,n 980 42.814 22.605 50 0 100 602 42.647 22.928 50 0 100
Ui,b 1207 54.941 33.547 60 0 100 602 55.453 35.157 70 0 100
ãi 920 4.269 1.475 4 1 7 602 4.279 1.522 4 1 7
x̃i,k 1088 2.987 1.488 3 1 7 602 2.692 1.340 2 1 7
x̃i,n 784 2.933 1.652 3 1 7 602 2.745 1.599 2 1 7
x̃i,b 1084 5.183 1.728 6 1 7 602 5.591 1.602 6 1 7

Candidates locations and respondents’ bliss points according to the Aldrich-McKelvey method

ai 602 0.153 0.819 0.113 -3.704 4.233
xk 1 -0.422
xn 1 -0.394
xb 1 0.816

Note that it would have been possible to use the self-placement ãi and the perceived location

x̃i,j of candidate j, j = k, n, b, to obtain the distance di,j = |x̃i,j − ãi|. However, the perceived

location x̃i,j is respondent-specific, while xj in the utility functions (1), (2) and (3) is not. Thus,

using x̃i,j and ãi to compute the distance is problematic if respondents do not interpret the scale in

the same way, i.e., if there is a problem of interpersonal incomparability of responses. Subsection

3.1 shows that this problem is prevalent. Thus, Subsection 3.2 uses the Aldrich-McKelvey solution

to obtain accurate locations of the candidates and the bliss point of each respondent in a common

policy space.

3.1 A problem of interpersonal incomparability of responses

Panel (A) in Figure 2 suggests that, on average, voters who consider themselves as conservative

(ã = 6) or extremely conservative (ã = 7), place Kerry more on the left than those who consider

themselves as liberal (ã = 2) or extremely liberal (ã = 1). Indeed, Mean(x̃k|ã = 6) = 2.07 and

Mean(x̃k|ã = 7) = 2.22 while Mean(x̃k|ã = 1) = 3.3 and Mean(x̃k|ã = 2) = 2.74. Note that
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the conditional means are depicted by (red) solid triangles in the box-and-whisker diagrams of

Figure 2; it is then also easy to see in Panel (C) that, on average, voters who consider themselves

as liberal or extremely liberal place Bush more on the right than those who consider themselves

as conservative or extremely conservative. The conditional (0.25, 0.50, 0.75) quantiles of the box-

and-whisker diagrams provide similar stories, so these trends seem to be robust to outliers.
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Figure 2: Perceived location of Kerry (x̃k), Nader (x̃n) and Bush (x̃b) conditional on self-placement (ã)
(Final sample)
Notes: The three figures represent box-and-whisker diagrams. The bottom and the top of a box are the first and third
quartile. The ends of the whiskers are the lowest datum still within 1.5 times the interquartile range from the first quartile
and the highest datum still within 1.5 times the interquartile range from the third quartile. If there are any data beyond that
distance (i.e., outliers), they are represented as circles. The conditional median is represented by a line (inside the box). The
graphics also provide the conditional mean, represented by a (red) solid triangle.

Table 2 provides more formal tests of this problem of interpersonal incomparability. We first

linearly regress (via OLS) x̃i,j on ãi for each candidate j, i.e., x̃i,j = β0,j + β1,j ãi + εi,j . If there is

interpersonal incomparability of responses for candidate j, then the null hypothesis H0 : β1,j = 0

should be rejected. Part [A] of Table 2 shows that β̂1,j is negative and significantly different

from zero for Kerry (j = k) and Bush (j = b); that is, conservative respondents place Kerry

significantly more on the left than do liberal respondents and liberal respondents place Bush

significantly more on the right than do conservative respondents. Given the ordinal nature of the

data, a Spearman’s rank correlation ρ between x̃j and ã has also been considered to test the null

of interpersonal comparability H0 : ρ(ã, x̃j) = 0. Part [B] of Table 2 shows that the null is again
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rejected for Kerry and Bush.

Table 2: Statistical tests of interpersonal
comparability of responses

[1] [2] [3]
Kerry (x̃k) Nader (x̃n) Bush (x̃b)

[A] OLS estimates

β̂1,j -0.189*** -0.002 -0.141***
(0.035) (0.041) (0.034)
[0.000] [0.948] [0.000]

β̂0,j 3.501*** 2.754*** 6.197***
(0.145) (0.194) (0.156)

R2 0.046 0.000 0.020

[B] Spearman’s rank correlations

ρ̂(ã, x̃j) -0.316*** -0.000 -0.214***
[0.000] [0.986] [0.000]

N 602 602 602

Notes: (i.) *, ** and *** represent statistical significance
at the 10, 5 and 1% levels, respectively.
(ii.) Heteroskedasticity-robust standard errors are in
parentheses.
(iii.) Achieved significance levels (or p-values) of interest
are in brackets [·].

3.2 Recovering the underlying distances between the candidates and the re-

spondents

Given that the problem of interpersonal incomparability of responses is obvious, using ãi and

x̃i,j to obtain the right-hand side variables di,j can bias the results. Thus, we follow Aldrich and

McKelvey (1977) to recover the underlying locations of the candidates and the respondents on a

common dimension, the real line R. Then, these values are used to compute the actual distances.

We briefly explain the method below.

The general idea of Aldrich and McKelvey is that the responses x̃i,j, j = k, n, b, provided by

respondent i follow a two-step process.15 In a first step, respondent i retrieves relevant information

15The assumption that the response process is multi-steps is in line with the current literature on the psy-
chology of survey responses. For instance, the state-of-the-art book of Tourangeau et al. (2000) considers that a
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on the actual locations xj, j = k, n, b, of the candidates on R. However, because respondent i

has only a finite amount of time to process information and provide answers, it is assumed that

his perception xi,j of the candidate j is subject to an error term εi,j , such that xi,j = xj + εi,j .

Note that εi,j satisfies the traditional Gauss-Markov assumptions. In a second step, respondent

i reports an answer x̃i,j for each candidate j to the interviewer. This answer is assumed to be

a (linear) distortion of his perception xi,j since there is not a common metric for placing the

candidates. If so, there are distortion parameters ci and wi for each respondent i such that

xi,j = xj + εi,j = ci + wix̃i,j (Aldrich and McKelvey, 1977, Equation (3), p.114).

Consider the following matrix notation:

X =




xk

xn

xb




X̃i =




1 x̃i,k

1 x̃i,n

1 x̃i,b




βi =




ci

wi


 and F =




1

1

1




If the vector X of actual locations were known, then the best linear unbiased estimator β̂i of

the distortion parameters for respondent i would be β̂i = (X̃ ′
iX̃i)

−1X̃ ′
iX, and the sum of squared

residuals for this respondent (X − X̃iβ̂i)
′(X − X̃iβ̂i). To obtain the vector X of actual locations,

it is assumed that the scale is standardized, i.e.,
∑

j∈{k,n,b} xj = X ′F = 0 and
∑

j∈{k,n,b} x
2
j =

X ′X = 1. Then the total sum of squared residuals of all the respondents is minimized subject to

this standardized scale constraint. That is, a Lagrangian multiplier problem is set up as follows:

L(β̂i,X, α1, α2) =
∑N

i=1(X − X̃iβ̂i)
′(X − X̃iβ̂i) + 2α1X

′F + α2(X
′X − 1), where α1 and α2

are Lagrangian multipliers. Setting A =
∑N

i=1 X̃i(X̃
′
iX̃i)

−1X̃ ′
i, the Lagrangian multiplier problem

permits to obtain [A−NI3]X = α2X, where I3 is the 3×3 identity matrix (Aldrich and McKelvey,

1977, Equation (24), p.115). By definition, α2 is an eigenvalue of [A−NI3] and X an eigenvector

survey response process involves four steps: understanding the question, retrieving relevant information, using this
information to make a judgment, and selecting and reporting of an answer.
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of [A − NI3] (Fuente, 2000, p.146). It can then be shown that −X ′[A − NI3]X =
∑N

i=1(X −

X̃iβ̂i)
′(X − X̃iβ̂i) = −α2 (Aldrich and McKelvey, 1977, Equation (26), p.116). In words, the

solution X is the eigenvector of [A−NI3] with the highest (negative) nonzero eigenvalue.

Having obtained the candidate locations X, it is then possible to obtain each respondent’s

bliss point in the common space, the real line. Indeed, it is now possible to estimate the distortion

parameters by computing β̂i = (X̃ ′
iX̃i)

−1X̃ ′
iX. Then, one has to subject each respondent’s bliss

point to the same transformation that his perceptions of the candidates are subjected to. Given

that ãi is respondent i’s self placement, his bliss point ai in the common policy space is ai =

ĉi + ŵiãi (Aldrich and McKelvey, 1977, Equation (32), p.117).

The computations are carried out in the R environment and make use of the basicspace

package (Poole et al., 2016). We obtain that the location of Kerry is xk = −0.422, the one of

Nader is xn = −0.394, and the one of Bush is xb = 0.816. Concerning the respondents’ bliss points

a, Figure 3 presents the kernel density estimate, based on a Gaussian kernel and a bandwidth

chosen according to likelihood cross-validation. Note this kernel density estimate will be helpful

for the counterfactual analyses based on the intensity valence model. Indeed, with this model,

the existence of dominant strategies depends on the whole distribution of voter preferences (and

not only the median voter). To test if one candidate has dominant strategies which would have

insured him to obtain a majority of the popular vote, it is necessary to understand where are his

plausible dominant strategies. The shape of the kernel density estimate will be helpful for that;

we will go back to this issue in Subsection 5.2.

4 Estimation results

Given that we have now an accurate location xj for each candidate j and the bliss point

ai of each respondent i in a common policy space, it is possible to compute accurate distances
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Figure 3: Kernel density estimate for bliss points (a) –Gaussian kernel with bandwidth of 0.3043–
Note: The selection of the bandwidth (h = 0.3043) is done by likelihood cross-validation (Li and Racine, 2007, p.18) making
use of the R np package (Hayfield and Racine, 2008).

di,j = |xj − ai|, and estimate the different SUR models described in Subsection 2.2. This Section

presents the maximum likelihood estimates16, and tests the three constrained utility functions (i.e.,

the Downsian, the additive valence and the intensity valence). Subsection 4.1 provides the results

but treats the distances between ai and xj as observed variables, i.e., ignoring any estimation error

in these variables. It is prudent to stress that the locations of the candidates and the respondents’

bliss points are estimates; the uncertainty in the estimates of these variables can influence the test

statistics considered. Hence, Subsection 4.2 proposes a bootstrap method to solve this potential

problem. Lastly, Subsection 4.3 relaxes the assumption that the utility functions are linear in

distance, and compares the results with those obtained without an Aldrich-McKelvey correction.

16In practice, the maximum likelihood estimates of the different SUR models considered are computed using an
iterated Zellner scheme (see, e.g., Ruud, 2000, p.706).
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4.1 Preliminary results

Column [1] of Table 3 presents the maximum likelihood estimate of the unconstrained SUR

model. Columns [2]-[4] give the maximum likelihood estimates of the three constrained models.

Given that the estimation method rests on maximizing the likelihood function, a constrained

model is rejected if its restrictions make a large difference to the maximized value of the log-

likelihood function. As explained below, the likelihood ratio statistics indicate that the Downsian

and the additive valence models are rejected, while the intensity valence model is not.17

Column [2] imposes the Downsian hypothesis, so there are only two parameters: one additive

coefficient δ which is the same for the three candidates, and one slope coefficient λ which is also

the same for the three candidates. Hence, the Downsian model imposes four restrictions on the

unconstrained model. The likelihood ratio statistic is 146.964 (≃ 2× [−8312.973− (−8386.455)]).

Given that the 1 percent critical value from the chi-squared distribution with 4 degrees of freedom

is 13.28, the Downsian model is rejected.

Column [3] imposes the additive valence hypothesis, so there are four parameters: one slope

coefficient λ which is the same for the three candidates, and the three additive coefficients δj ,

j = k, n, b. Thus, the additive valence model imposes two restrictions on the unconstrained model.

The likelihood ratio statistic is 29.183 (≃ 2× [−8312.973 − (−8327.565)]). The 1 percent critical

value with 2 degrees of freedom is 9.21. So the additive valence model is also rejected.

Lastly, Column [4] imposes the intensity valence hypothesis. As stated in Subsection 2.2, and

given that there are three candidates, the intensity valence model imposes one restriction on the

unconstrained model. The likelihood ratio statistic, 0.133 (≃ 2 × [−8312.973 − (−8313.04)]), is

17A likelihood ratio statistic is twice the difference between the unconstrained maximum value of the log-likelihood

function and the maximum subject to the restrictions: 2
(
ℓ̂u − ℓ̂c

)
, where ℓ̂u and ℓ̂c denote, respectively, the

unconstrained and constrained maximum log-likelihood values. It is asymptotically chi-square distributed with
degrees of freedom equal to the number of restrictions imposed.
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far less than 2.71, the 10 percent critical value with 1 degree of freedom. Hence, the intensity

valence is the sole model which is not rejected.

Table 3: Maximum likelihood estimates of the 4 SUR models

[1] [2] [3] [4]
Unconstrained Downs Additive Intensity

valence valence
δj = δ, ∀j λj = λ, ∀j δj = λjK + c

and
λj = λ, ∀j

Uk (Utility if Kerry is elected)

δ̂k 60.769*** 59.650*** 60.086***
(1.445) (0.910) (1.209)

λ̂k 12.954*** 11.007*** 12.083*** 13.284***
(1.376) (0.947) (0.927) (1.152)

Un (Utility if Nader is elected)

δ̂n 47.070*** 59.650*** 51.942***
(1.485) (0.910) (1.197)

λ̂n 5.748*** 11.007*** 12.083*** 5.591***
(1.500) (0.947) (0.927) (1.470)

Ub (Utility if Bush is elected)

δ̂b 71.988*** 59.650*** 65.589***
(1.866) (0.910) (1.504)

λ̂b 19.711*** 11.007*** 12.083*** 19.530***
(1.674) (0.947) (0.927) (1.577)

K̂ 1.797***
(0.184)

ĉ 36.966***
(2.618)

N 602 602 602 602

Log-likelihood -8312.973 -8386.455 -8327.565 -8313.04

Likelihood ratio test 146.964*** 29.183*** 0.133

Bootstrapped likelihood ratio test (ÂSL) 0*** 0.011** 0.979
(assuming C is the 1 percent critical value)

Bootstrapped likelihood ratio test (ÂSL) 0*** 0.002*** 0.867
(assuming C is the 10 percent critical value)

Notes: i.*, ** and *** represent statistical significance at the 10, 5 and 1% levels, respectively.
ii. Standard errors are in parentheses.
iii. “Unconstrained” provides the maximum likelihood estimate of the unconstrained SUR model.

iv. Bootstrapped likelihood ratio test (ÂSL) provides the achieved significance level of the test, i.e.,

ÂSL = ♯{η=1,...,B ; LR∗(η)≤C}
B

(we always consider B = 999 bootstrap samples). The first line assumes
that C is the 1 percent critical value from the chi-squared distribution, i.e., C = 13.28 for the test of the
Downsian model (given that it has 4 degrees of freedom), C = 9.21 for the test of the additive valence
model (given that it has 2 degrees of freedom), and C = 6.63 for the test of the intensity valence model
(given that it has 1 degree of freedom). The second bootstrapped likelihood ratio test assumes that
C is the 10 percent critical value from the chi-squared distribution, i.e., C = 7.78 for the test of the
Downsian model (given that it has 4 degrees of freedom), C = 4.61 for the test of the additive valence
model (given that it has 2 degrees of freedom), and C = 2.71 for the test of the intensity valence model
(given that it has 1 degree of freedom). The method and the results are discussed in Subsection 4.2.
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4.2 Bootstrapped likelihood ratio tests

A critic which can be addressed against the likelihood ratio tests discussed above is that the

log-likelihoods used to compute them depend in part on the first-step estimation of the locations

of the candidates and the bliss points of the respondents obtained via the Aldrich-McKelvey

method. This is a problem because we have inferred that a model is rejected or not ignoring

any estimation error in the first-step estimation. To take into account this two-step estimation

problem, this Subsection considers bootstrapped likelihood ratio tests; we explain below.

Let ωi = (Uik, Uin, Uib, x̃ik, x̃in, x̃ib, ãi) be the respondent i’s answers to the set of questions

which are needed for the estimations, and W = (ω1, ω2, . . . , ωN )′ the sample. A bootstrap sample

W∗ of size N is obtained by sampling from ω1, ω2, . . . , ωN with replacement. Recall that in our

case the sample is of size N = 602. The steps to obtain a bootstrapped likelihood ratio test in

order to test a model (e.g., the Downsian utility function) can then be summarized as:

(i.) Draw B = 999 bootstrap samples W∗ of size N = 602.

(ii.) For each bootstrap sample W∗: first, estimate the actual locations of the candidates, i.e.,

{x∗k, x
∗
n, x

∗
b} as well as the bliss point a∗i of each respondent i using the Aldrich-McKelvey

method; second, use the values obtained to compute d∗i,j , and estimate the unconstrained

SUR model as well as the constrained model under consideration (e.g., the Downsian utility

function); third, use the log-likelihoods of these two models to obtain the likelihood ratio

statistic (LR∗). Given that there are B bootstrap samples, this leads to B likelihood ratio

statistics LR∗(η), η = 1, 2, . . . , B.

(iii.) Count the proportion of bootstrap samples for which LR∗ ≤ C, where C is a critical value.

In the context of a bootstrap likelihood ratio test, the critical value C can be chosen from

the chi-squared table, given that a likelihood ratio statistic is chi-square distributed. We
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will consider two versions of the test: the first one assuming that C is the 1 percent critical

value, and the second one assuming that C is the 10 percent critical value (with degrees of

freedom depending on the model considered; e.g., 4 in the case of the Downsian one). The

achieved significance level (or p-value) of the test is then ÂSL = ♯{η=1,...,B ; LR∗(η)≤C}
B

.

(iv.) Fail to reject the null hypothesis whenever ÂSL is larger than standard levels of significance.

The two last lines in Table 3 provide the achieved significance levels of the tests. In the case of

the Downsian model, out of B = 999 bootstrap samples, we never observe LR∗ ≤ C, whether C

is assumed to be 13.28 (i.e., the 1 percent critical value from the chi-squared distribution with

4 degrees of freedom) or 7.78 (i.e., the 10 percent critical value). Thus, it gives an achieved

significance level of zero in both cases. So the Downsian model is always rejected. In the case

of the additive valence model, we observe LR∗ ≤ C as many as 11 times when C is assumed

to be 9.21 (i.e., the 1 percent critical value from the chi-squared distribution with 2 degrees of

freedom), giving an achieved significance level of 0.011. So this model is rejected at the 5 percent

significance level. Finally, the intensity valence is again the sole model which is never rejected at

any conventional level of significance.

4.3 Relaxing the assumption that the utility functions are linear in distance

The estimations in Table 3 assume that the utility functions are linear in distance. Some

authors consider a squared distance (e.g., Adams et al., 2005). Given that the objective is to find

the utility function that better represents voters’ evaluations of candidates, we now consider that

the utility functions are power functions of the distance, e.g., Ui,j = δj − λj |xj − ai|
γ + εi,j for

the unrestricted utility function, where the power γ has to be estimated.

Table 4 provides the results. The first result is that, again, the intensity valence is the sole

model which is not rejected by the data, considering the simple likelihood ratio tests or the
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bootstrapped likelihood ratio tests (the procedure is similar to the one presented in Section 4.2).

The second important result concerns the estimated coefficient γ̂ = 0.389 and its estimated

standard error ŝe(γ̂) = 0.076. The 99 percent confidence interval of γ is then [0.192, 0.587]. Thus,

the null hypothesis H0 : γ = 1, the assumption made in Subsections 4.1 and 4.2, is rejected.

The null hypothesis H0 : γ = 2, the assumption made in Adams et al. (2005), is also rejected.

Note that we have also considered a 99 percent confidence interval based on bootstrap percentiles

to take into account that the locations of the candidates and the respondents’ bliss points are

estimates and thus prone to estimation errors. The procedure is very close to the one presented

in Subsection 4.2, except that for each bootstrap sample, once the intensity valence model is

estimated, γ̂∗ is saved. The percentile method uses the 0.5th and the 99.5th percentiles of the

empirical distribution of the B = 999 bootstrap estimates γ̂∗(η), η = 1, . . . , B. Denote by γ̂∗0.005

and γ̂∗0.995 the 0.05th and the 99.5 percentiles of this empirical distribution. The percentile 99

percent confidence interval for γ is then [γ̂∗0.005, γ̂
∗
0.995] = [0.211, 0.596], so again H0 : γ = 1 and

H0 : γ = 2 are rejected.

Note that if we had not used an Aldrich-McKelvey correction to compute the distances, we

would have also obtained that the intensity valence is the sole model which is not rejected by the

data. But we would have obtained a γ̂ not significantly different from one; the results are presented

in Appendix A. It echoes Adams et al. (2005, p.17) who aptly explain that “‘there is evidence

that linear utility gives a better fit to thermometer scores interpreted as utilities [...]. Inferring

that the utility scale itself is linear from such evidence is, however, problematic, because [...] the

policy scales from which distance is measured [...] are constrained to specified finite intervals

(typically 1-7 or 1-10 for the policy scales[...]).” In line with Adams et al., our results show that

when an Aldrich-McKelvey scaling is used to solve the problem of interpersonal incomparability

of responses, the utility function is no more linear in distance.
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Table 4: Maximum likelihood estimates of the 4 SUR models relaxing the as-
sumption that the utility functions are linear in distance

[1] [2] [3] [4]
Unconstrained Downs Additive Intensity

valence valence
δj = δ, ∀j λj = λ, ∀j δj = Kλj + c

and
λj = λ, ∀j

Uk (Utility if Kerry is elected)

δ̂k 81.072*** 71.325*** 71.648***
(5.915) (4.327) (4.116)

λ̂k 36.540*** 24.760*** 25.857*** 36.239***
(6.274) (4.676) (4.384) (6.103)

Un (Utility if Nader is elected)

δ̂n 50.900*** 71.325*** 63.471***
(3.033) (4.327) (4.119)

λ̂n 9.984*** 24.760*** 25.857*** 10.106***
(3.393) (4.676) (4.384) (3.371)

Ub (Utility if Bush is elected)

δ̂b 102.995*** 71.325*** 77.297***
(8.718) (4.327) (4.211)

λ̂b 55.284*** 24.760*** 25.857*** 55.427***
(9.174) (4.676) (4.384) (9.173)

K̂ 1.147***
(0.053)

ĉ 39.357***
(1.681)

γ̂ 0.389*** 0.470*** 0.484*** 0.389***
(0.076) (0.108) (0.100) (0.076)

[0.211,0.596]

N 602 602 602 602

Log-likelihood -8279.521 -8371.640 -8311.173 -8279.542

Likelihood ratio test 184.238*** 63.304*** 0.043

Bootstrapped likelihood ratio test (ÂSL) 0*** 0*** 0.986
(assuming C is the 1 percent critical value)

Bootstrapped likelihood ratio test (ÂSL) 0*** 0*** 0.893
(assuming C is the 10 percent critical value)

Notes: i.*, ** and *** represent statistical significance at the 10, 5 and 1% levels, respectively.
ii. Standard errors are in parentheses.
iii. “Unconstrained” provides the maximum likelihood estimate of the unconstrained SUR model.

iv. Bootstrapped likelihood ratio test (ÂSL) provides the achieved significance level of the test, i.e.,

ÂSL =
♯{η=1,...,B ; LR∗(η)≤C}

B
(we always consider B = 999 bootstrap samples). The method is

discussed in Subsection 4.2, as well as in Note (iv.) at the bottom of Table 3.
v. The interval [0.211,0.596] below the estimated standard error of γ̂ for the intensity valence model
corresponds to the percentile 99 percent confidence interval [γ̂∗

0.005, γ̂
∗
0.995] for γ. The percentile method

uses the percentiles of the empirical distribution of B = 999 bootstrap estimates γ̂∗(η), η = 1, . . . , B.

25



5 Who will win the popular vote?

In the previous section, we have shown that the intensity valence utility function is not rejected

by the data. Given that we have the actual locations of candidates, the bliss points of voters, and

the estimated parameters of the intensity valence utility function, one can show the sources of

support for each candidate according to a spatial model of electoral competition. We elaborate

on it in Subsection 5.1: we make the mild assumption that Kerry, Nader and Bush are the only

candidates who compete for the election, and study if it would have been possible to predict

the fact that Bush won the popular vote with 50.73 percent; we compare the results with those

obtained via the Downsian and the additive valence models. Then, in Subsection 5.2, we provide

a counterfactual analysis. More precisely, according to the theory, the parameters of the intensity

valence utility functions are “deep”parameters, i.e., parameters which are invariant to the policies

proposed by the candidates. If so, one can use them to determine the percentage of vote that one

candidate would have obtained if he and the other candidates had proposed other policies than

xk = −0.422, xn = −0.394 and xb = 0.816. A natural question in a spatial model of electoral

competition is to know if one candidate may propose some policies which insure him to obtain a

majority of the popular vote whatever the policies proposed by the other candidates. Thus, we

study in Subsection 5.2 if one candidate has such dominant strategies.

5.1 Support for each candidate according to the intensity valence model

The locations of Kerry, Nader and Bush are xk = −0.422, xn = −0.394 and xb = 0.816,

respectively. Using these values and the estimated intensity valence utility function parameters of

the three candidates obtained in Column [4] of Table 4, Figure 4 describes the estimated intensity

valence utilities given by the three candidates in the policy space. Given that there is three

candidates, it is possible that some voters vote strategically. In particular, those whose most
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preferred candidate is Nader may prefer to vote for their second most preferred candidate given

that Nader is unlikely to win. Thus, we will consider two extreme cases: a first case wherein all

the voters vote sincerely, and a second case wherein all the voters whose most preferred candidate

is Nader vote strategically, i.e., for their second most preferred candidate.

If all the voters vote sincerely, they will vote for the candidate who gives them the highest

level of utility. It is easy to see from Figure 4, that:

(i.) The voters whose bliss points are strictly between a2 ≃ 0.068 and a3 ≃ 2.456 obtain the

highest level of utility with Bush. If so, these voters will vote for Bush. Let Sj be the

fraction of voters who will vote for candidate j. Then, the relative frequency of voters who

will vote for Bush is Ŝb =
♯{i=1,...,N ; a2<ai<a3}

N
≃ 0.5099.

(ii.) The voters whose bliss points are strictly between a1 ≃ −1.857 and a2 ≃ 0.068 obtain the

highest level of utility with Kerry. If so, these voters will vote for Kerry. The relative

frequency of voters who will vote for Kerry is then Ŝk = ♯{i=1,...,N ; a1<ai<a2}
N

≃ 0.4652.

(iii.) The voters whose bliss points are strictly less than a1 ≃ −1.857, as well as those whose bliss

points are higher than a3 ≃ 2.456, obtain the highest level of utility with Nader. The relative

frequency of voters who will vote for Nader is then Ŝn = ♯{i=1,...,N ; ai<a1 or ai>a3}
N

≃ 0.0249.

Now, if all the voters whose most preferred candidate is Nader vote for their second

most preferred candidate, then it is easy to see from Figure 4, that:

(i.) The voters whose bliss points are higher than a3 ≃ 2.456 and less than a4 ≃ 3.933 prefer

Nader but will vote for Bush, their second most preferred candidate. If so, all the voters

whose bliss points are strictly between a2 ≃ 0.068 and a4 ≃ 3.933 will vote for Bush. The

relative frequency of voters who will vote for Bush is then Ŝb =
♯{i=1,...,N ; a2<ai<a4}

N
≃ 0.518.
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Figure 4: Estimated intensity valence utility functions
Note: This Figure depicts the three estimated intensity valence utilities in function of a obtained in Table 4. The (red) solid
curve depicts the estimated utility if Bush is elected. The (blue) dashed curve depicts the estimated utility if Kerry is elected.
The (green) dotdash curve depicts the estimated utility if Nader is elected. The locations of Kerry, Nader and Bush are
xk = −0.422, xn = −0.394 and xb = 0.816, respectively. Finally, a1 ≃ −1.857, a2 ≃ 0.068, a3 ≃ 2.456 and a4 ≃ 3.933.

(ii.) The voters whose bliss points are higher than a4 ≃ 3.933 prefer Nader but will vote for

Kerry, their second most preferred candidate. The voters whose bliss points are less than

a1 ≃ −1.857 prefer Nader but will also vote for Kerry, their second most preferred candidate.

If so, all the voters whose bliss points are strictly less than a2 ≃ 0.068, as well as those whose

bliss points are strictly more than a4 ≃ 3.933 will vote for Kerry. The relative frequency of

voters who will vote for Kerry is then Ŝk = ♯{i=1,...,N ; ai<a2 or ai>a4}
N

≃ 0.482.

Table 5 provides a summary of the results. The point estimates of the fractions of vote obtained

via the intensity valence model under the assumption of sincere voting (i.e., Ŝb ≃ 0.5099, Ŝk ≃

0.4652, Ŝn ≃ 0.0249) or under the assumption of strategic voting (i.e., Ŝb ≃ 0.518, Ŝk ≃ 0.482,

Ŝn = 0) are very close to the percentages of vote obtained by the candidates in reality (i.e.,

Sb = 0.5073, Sk = 0.4827, Sn = 0.0038). Table 5 also provides the point estimates of the fractions

of vote obtained with the Downsian and the additive valence models (using the estimates of Table
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4). Appendix B presents figures which depict the estimated utility functions of these models in

the policy space and discusses in more details the results. The point estimates obtained with the

Downsian model are unrealistic. Under the assumption of sincere voting, this model implies that

31.56 percent of the voters will vote for Nader (Line [2a] in Table 5); and under the assumption

of strategic voting, this model implies that Kerry will win with 54.98 percent of the votes (Line

[2b] in Table 5). Concerning the additive valence model, the point estimates are similar under the

assumption of sincere and strategic voting (Lines [3a] and [3b] in Table 5); nobody will vote for

Nader even under the assumption of sincere voting. This is due to the fact that the locations of

Kerry (xk = −0.422) and Nader (xn = −0.394) are very close, and Kerry has an additive-valence

advantage over Nader (δ̂k > δ̂n). Thus, the higher additive valence of Kerry implies a higher level

of utility with Kerry than with Nader for all voters; see Figure B2 in Appendix B. The point

estimates obtained for Kerry and Bush with the additive valence model are closer to reality than

those obtained with the Downsian model, but not as close as those obtained with the intensity

valence model.

Lastly, the point estimates of the fractions of votes obtain via the intensity valence model fit

well with reality, but one would like to know if it would have been possible to predict with the

pre-election survey the fact that Bush won the popular vote. That is, one would like to take into

account sampling variation and test the null hypothesis H0 : Sb ≤ 0.50 versus H1 : Sb > 0.50. If

the null is rejected, one is able to predict the fact that Bush won the popular vote.

To test the null, we have drawn B = 999 bootstrap samples of size N = 602, as previously

done. For each bootstrap sample W∗, we first estimate the actual locations of the candidates, i.e.,

{x∗k, x
∗
n, x

∗
b}, as well as the location a∗i of each respondent i using Aldrich-McKelvey, then estimate

the intensity valence SUR model, and use the estimated parameters to find the relative frequency

Ŝ∗
b of popular vote for Bush. There are B = 999 bootstrap estimates Ŝ∗

b (η), η = 1, 2, . . . , B; the

29



Table 5: Popular vote: Reality and point estimates according to the
different models

Kerry Nader Bush

[1] Popular vote: Reality
48.27% 0.38% 50.73%

[2a] Point estimates according to the Downsian model with sincere voting
23.75% 31.56% 44.68%

[2b] Point estimates according to the Downsian model with strategic voting
54.98% 0% 45.01%

[3a] Point estimates according to the additive valence model with sincere voting
47.51% 0% 52.49%

[3b] Point estimates according to the additive valence model with strategic voting
47.51% 0% 52.49%

[4a] Point estimates according to the intensity valence model with sincere voting
46.51% 2.49% 50.99%

[4b] Point estimates according to the intensity valence model with strategic voting
48.17% 0% 51.82%

Note: The results of the popular vote obtained in reality (Line [1]) are
drawn from the 2004 United States presidential election Wikipedia webpage; see
https://en.wikipedia.org/wiki/2004_United_States_presidential_election .

estimated achieved significance level of the test is then ÂSL =
♯{η=1,...,B ; Ŝ∗

b (η)≤0.50}
B

.

Under the assumption that all the voters whose most preferred candidate is Nader vote for

their second most preferred candidate, the achieved significance level is ÂSL = 0.247. Under

the assumption that all the voters vote sincerely, the achieved significance level is ÂSL = 0.384.

Hence, the null H0 : Sb ≤ 0.50 is never rejected. It means that taking into consideration sampling

variation, it would not have been possible to predict the fact that Bush obtained a majority of

the popular vote with the pre-election survey.

5.2 Testing if Bush has dominant strategies which would have insured him to

win the popular vote

A last question is to know if one candidate has dominant strategies which would have insured

him to obtain a majority of the popular vote. As already noticed, with the intensity valence

utility function, a high intensity valence is not always an advantage to win a popular vote; it
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depends on the heterogeneity of the distribution of voters in the policy space. More precisely,

Gouret and Rossignol (2019, Propositions 3 and 5) show that, in a model with two purely-office

motivated candidates, if the distribution of voters is sufficiently homogeneous, then the candidate

with the highest intensity valence has dominant strategies which insure him to obtain a majority

of the popular vote. In contrast, if the distribution of voters is too heterogenous, it is the candidate

with the lowest intensity valence who has such dominant strategies.18 This Section shows that

the distribution of voters is sufficiently homogenous for Bush, the candidate with the highest

intensity valence, to have dominant strategies. Like in Subsection 5.1, we consider two extreme

cases: a case wherein all the voters vote sincerely, and a case wherein all the voters whose most

preferred candidate is Nader vote for their second most preferred candidate. This second case is

easier to analyze given that it reduces to a model of political competition with two candidates,

Bush and Kerry; hence, we begin by studying this case.

5.2.1 Bush versus Kerry

In this first part, we consider that all the voters whose most preferred candidate is Nader vote

for their second most preferred candidate, Kerry or Bush. A dominant strategy for Bush is thus

defined as follows.

Definition 1 Let Sb(xb, xk) be the fraction of voters who would have voted for Bush if Bush

had located at xb and Kerry at xk. Consider that xb = xb and Sb(xb, xk) has a minimum at

xk = xk. Then, xb is a dominant strategy which would have insured Bush to obtain a majority

of the popular vote if Sb(xb, xk) >
1
2 .

Before to test if Bush has some dominant strategies, it is necessary to understand where are

18For moderate heterogeneity, no candidate has a dominant strategy which insures him to obtain the major-
ity, and, more generally, no pure strategy Nash equilibrium exists; only mixed strategy equilibria exist in this
intermediate case.
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his plausible dominant strategies. Gouret and Rossignol (2019, Proposition 3) show that, in a

model with two candidates, if the distribution of voters has a probability density function which

is symmetric, strictly increasing on (−∞,m] and strictly decreasing on (m,+∞), with m the

median/mean/mode of the distribution, then the candidate with the highest intensity valence

has an interval of policies symmetric around m which insure him to obtain a majority of the

popular vote. As shown in Table 1, the mean of the distribution of voters in the policy space is

0.153 and the median 0.113. The kernel density estimate in Figure 3, which also suggests that

the distribution of voters is not symmetric, appears to be strictly increasing until a mode which

is close to 0 and then strictly decreasing. These elements suggest that if Bush has dominant

strategies, these dominant strategies are between –or around– 0 and 0.15. Thus, we have first

studied if xb = 0 is a dominant strategy for Bush. Following Definition 1, and abstracting for the

moment from sampling variation, we need to find xk = xk which minimizes Ŝb(0, xk), and then

check that Ŝb(0, xk) >
1
2 . The steps we have followed can be summarized as:

(i.) We have used the estimated parameters in Column [4] of Table 4 to obtain the utility of

each voter i if Bush had located at xb = 0, i.e., Û0
i,b = ĉ+ λ̂b

(
K̂ − |0− ai|

γ̂
)
.

(ii.) Then, we have found xk, i.e., xk ∈ argminxk∈R Ŝb(0, xk). To do so, we have defined a

vector of (801) possible values for xk ranging from −3.7 to 4.3, incremented by 0.01.19

For each possible value for xk, we have used the estimated parameters in Column [4] of

Table 4 to obtain the utility of each voter i if Kerry had located at xk, i.e., Ûi,k = ĉ +

λ̂k

(
K̂ − |xk − ai|

γ̂
)
, and have computed each time Ŝb(0, xk) by counting the proportion of

voters for whom Û0
i,b > Ûi,k, i.e., Ŝb(0, xk) =

♯{i=1,...,N ; Û0
i,b

>Ûi,k}

N
. Given that there are 801

possible values for xk, this leads to 801 Ŝb(0, xk). Finally, among these 801 Ŝb(0, xk), we

19We have chosen values for xk ranging from −3.7 to 4.3 because the respondents are located between -3.704 and
4.233; see Table 1.
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have chosen the one which is minimal; xk is the corresponding xk.

Ŝb(0, xk) has a minimum at xk = xk = 0.28. Panel (A) of Figure 5 depicts the utilities if Bush

had located at xb = 0 and Kerry at xk = 0.28. If xk = 0 and xk = 0.28, then Ŝb(0, 0.28) = 0.549.

Hence, abstracting from sampling variation, this result indicates that xb = 0 is a dominant

strategy for Bush: it would have insured him to obtain a majority of the popular vote. To take

into consideration sampling variation and test the null hypothesis that xb = 0 is not a dominant

strategy (i.e., H0 : Sb(0, xk) ≤ 0.50) against the alternative that it is (i.e., H1 : Sb(0, xk) > 0.50),

we have drawn B = 999 bootstrap samples of size N = 602, as previously done. For each

bootstrap sample W∗, we estimate the actual locations of the candidates as well as the location

of each respondent using Aldrich-McKelvey, then estimate the intensity valence SUR model, and

use the estimated parameters and consider that xb = 0; finally we find the location of Kerry x∗k

which minimizes the percentage of votes for Bush, i.e., Ŝ∗
b (0, x

∗
k). There are B = 999 bootstrap

estimates Ŝ∗
b [0, x

∗
k(η)], η = 1, 2, . . . , B. The estimate of the achieved significance level of the test

is then ÂSL =
♯{η=1,...,B ; Ŝ∗

b [0,x
∗
k(η)]≤0.50}

B
. Here, ÂSL = 0.015, so the null is rejected at the 5

percent significance level. Thus, xb = 0 is a dominant strategy for Bush.

Proceeding in a similar fashion, Part [A] of Table 6 provides the results with other plausible

dominant strategies for Bush around zero. Ŝb(xb, xk) > 0.50 if xb = {−0.10, 0.10, 0.20, 0.30, 0.33}.

However, the null H0 : Sb(xb, xk) ≤ 0.50 is rejected at reasonable levels of significance only when

xb = {0.10, 0.20}. The case xb = 0.10 is particularly striking: out of B = 999 bootstrap samples,

we observe Ŝ∗
b (0.10, x

∗
k) ≤ 0.50 only one time, giving an achieved significance level of 0.001. Thus,

xb = 0.10 is clearly a dominant strategy which would have insured Bush to obtain a majority of

the popular vote.
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(A) Bush versus Kerry
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(B) Bush versus Kerry and Nader

Figure 5: Counterfactual analyses
Notes: In Panel (A), it is assumed that all the voters whose most preferred candidate is Nader vote for their second most
preferred candidate. It reduces to a model of political competition with Bush and Kerry. The (red) solid curve depicts the
estimated utility with Bush, assuming that he locates at xb = 0. The (blue) dashed curve depicts the utility with Kerry,

assuming that he locates at xk ∈ argminxk∈R Ŝb(0, xk), i.e., xk = 0.28. The relative frequency of voters who are between

a1 ≃ −1.889 and a2 ≃ 0.243 is Ŝb(0, 0.28) =
♯{i=1,...,N ; a1<ai<a2}

N
≃ 0.549.

In Panel (B), it is assumed that all the voters vote sincerely. The (red) solid curve depicts the estimated utility with
Bush, assuming that he locates at xb = 0. The (blue) dashed curve depicts the utility with Kerry and the (green) dotdash

curve depicts the utility with Nader assuming that Kerry and Nader locate at (xk, xn) ∈ argmin(xk,xn)∈R2 Ŝb(0, xk, xn), i.e.,

(xk, xn) = (0.28,−0.98). The relative frequency of voters who are between a1 ≃ −0.954 and a2 ≃ 0.243 is Ŝb(0, 0.28,−0.98) =
♯{i=1,...,N ; a1<ai<a2}

N
≃ 0.501.

5.2.2 Bush versus Kerry and Nader

Finally, we have considered the case wherein all the voters vote sincerely. A dominant strategy

for Bush is now defined as follows.

Definition 2 Let Sb(xb, xk, xn) be the fraction of voters who would have voted for Bush if he

had located at xb, Kerry at xk and Nader at xn. Consider that xb = xb, and Sb(xb, xk, xn) has a

minimum at the pair (xk, xn). If so, xb is a dominant strategy which would have insured Bush to

obtain a majority of the popular vote if Sb(xb, xk, xn) >
1
2 .

In order to compare the results with those of Subsubsection 5.2.1, Panel (B) of Figure 5

depicts the case if Bush had located at xb = 0, Kerry at xk = 0.28 and Nader at xn = −0.98;
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Table 6: Counterfactual analyses: Testing if Bush has dominant strategies which
would have insured him to win the popular vote

[A] Bush versus Kerry
xb

-0.11 -0.10 0 0.10 0.20 0.30 0.33 0.34

xk 0.17 0.18 0.28 0.38 -0.09 0.01 0.04 0.06

Ŝb(xb, xk) 0.490 0.514 0.549 0.594 0.588 0.508 0.506 0.493

ÂSL 0.426 0.366 0.015** 0.001*** 0.038** 0.306 0.432 0.489

[B] Bush versus Kerry and Nader
xb

-0.11 -0.10 0 0.10 0.20 0.30 0.33 0.34

xk 0.17 0.18 0.28 0.38 0.48 0.01 0.04 0.06
xn -1.07 -1.08 -0.98 -1.01 -0.77 1.22 1.27 1.28

Ŝb(xb, xk, xn) 0.450 0.475 0.501 0.539 0.519 0.458 0.456 0.443

ÂSL 0.798 0.765 0.542 0.408 0.431 0.795 0.875 0.901

Notes: i. *, ** and *** represent statistical significance at the 10, 5 and 1% levels, respectively.

ii. ÂSL provides the achieved significance level of the test H0 : “xb is not a dominant strategy” versus H1 :

“xb is a dominant strategy”. ÂSL =
♯{η=1,...,B ; Ŝ∗

b
[xb,x

∗

k
(η)]≤0.50}

B
in Part [A] (Bush versus Kerry) and ÂSL =

♯{η=1,...,B ; Ŝ∗

b
[xb,x

∗

k
(η),x∗

n
(η)]≤0.50}

B
in Part [B] (Bush versus Kerry and Nader). We have always considered B = 999

bootstrap samples.

note that (xk, xn) solves the following problem: (xk, xn) ∈ argmin(xk,xn)∈R2 Ŝb(0, xk, xn). In this

case, Ŝb(0, 0.28,−0.98) = 0.501 > 0.50; this result suggests that xb = 0 is a dominant strategy

for Bush. However, when we take into account sampling variation via a bootstrap procedure

similar to the one of Subsubsection 5.2.1, the null hypothesis H0 : Sb(0, xk, xn) ≤ 0.50 is not

rejected, so we cannot conclude that xb = 0 is a dominant strategy for Bush. Part [B] of Table

6 provides the results with other plausible dominant strategies for Bush. Ŝb(xb, xk, xn) > 0.50

when xb = {0.10, 0.20}, but the null H0 : Sb(xb, xk, xn) ≤ 0.50 is never rejected at any reasonable

level of significance. So we cannot conclude that there is a dominant strategy for Bush if all the

voters vote sincerely.
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6 Conclusion

This paper has taken the problem of interpersonal incomparability of responses to issue scales

seriously, and tested different utility functions using the 2004 pre-election survey of the ANES.

The one which is the most supported by the empirical evidence, the intensity valence utility

function, is also the one which permits to make the better predictions for the 2004 United States

presidential election. Furthermore, we have used the estimated intensity valence utility function

and the distribution of voters in the policy space obtained via the Aldrich-McKelvey method to

conduct some counterfactual analyses that assess if Bush had some dominant strategies which

would have insured him to win the popular vote.

We have found that in 2004 Bush was the candidate with the highest intensity valence. The

distribution of voter preferences in the policy space was sufficiently homogenous for him to have

dominant strategies which would have insured him to obtain a majority of the popular vote

(although they are not always significant). It is important to reiterate the fact that a model

with intensity valence requires specific attention to heterogeneity in voter preferences. Too much

heterogeneity may be problematic to implement intensively a policy. Above a threshold of het-

erogeneity, it is even known that it is the candidate with low intensity who has such dominant

strategies, and he is less and less constrained by the median voter (Gouret and Rossignol, 2019,

Proposition 3). It would be interesting to see if in more recent elections the distribution of voter

preferences was too heterogenous for the candidate with high intensity valence to have dominant

strategies. It may shed some light on the literature on mass polarization. Mass polarization

is usually interpreted as a bimodal distribution of the electorate, although other interpretations

exist (see, e.g., Krasa and Polborn, 2014). With this interpretation, the empirical research has

struggled to find consensus on the existence of mass polarization. Fiorina and Abrams (2008)
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have argued that there is no evidence of mass polarization given that the American electorate

remains unimodal. In contrast, Hare et al. (2015) have developed a Bayesian version of the

Aldrich-McKelvey scaling, and, although they do not provide a multimodality test, their analy-

sis of the 2012 ANES may suggest a bi- or even a trimodal distribution. The intensity valence

model has nothing to say on the implication of a multimodal distribution. But if we interpret

mass polarization as a too strong heterogeneity of the electorate, then the intensity valence model

might permit to say if the distribution is too heterogenous. More precisely, consider that we

find empirically that the candidate with low intensity has dominant strategies. It means that

the distribution of the electorate is heterogenous, and that this candidate will be less and less

constrained by the median voter if heterogeneity increases. Thus, it can explain the divergence

from the median voter.
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A Estimation results taking issue scale responses at face value

This Appendix provides maximum likelihood estimates of the four SUR models similar to

those in Table 4. However, the responses to the liberal-conservative scale are taken at face value

to obtain the distances, i.e., di,j = |ãi − x̃i,j|.

Table A1 provides the results. The first result is that the Downsian and the additive valence

models are rejected according to the likelihood ratio tests, while the intensity valence model is

not. This first result confirms the results obtained in Section 4.

The second result concerns the estimated coefficient γ̂ = 1.038 and its estimated standard error

ŝe(γ̂) = 0.066. The 95 percent confidence interval of γ is [0.909, 1.168], so the null hypothesis

H0 : γ = 1 is not rejected. However, the null H0 : γ = 2, the assumption made in Adams et al.

(2005), is rejected. As pointed out in the main text, this result echoes Adams et al. (2005, p.17)

who note that “‘there is evidence that linear utility gives a better fit to thermometer scores

interpreted as utilities”. As the results with the Aldrich-McKelvey correction suggest (Table 4),

and as Adams et al. aptly explain, the fact that the utility is linear in distance in Table A1 is

due to the fact that “the policy scales from which distance is measured [...] are constrained to

specified finite intervals.”

B Support for each candidate according to the Downsian and

additive valence models

B.1 Support for each candidate according to the Downsian model

Using the locations of Kerry, Nader and Bush (xk = −0.422, xn = −0.394 and xb = 0.816) and

the Downsian utility function parameters obtained in Column [2] of Table 4, Figure B1 describes

the estimated Downsian utilities given by the three candidates. As shown in Table 1, note that
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Table A1: Maximum likelihood estimates of the 4 SUR models relaxing the
assumption that the utility functions are linear in distance and taking liberal-
conservative scale responses at face value

[1] [2] [3] [4]
Unconstrained Downs Additive Intensity

valence valence
δj = δ, ∀j λj = λ, ∀j δj = Kλj + c

and
λj = λ, ∀j

Uk (Utility if Kerry is elected)

δ̂k 71.458*** 70.081*** 68.507***
(1.530) (1.209) (1.326)

λ̂k 9.228*** 8.477*** 7.054*** 9.358***
(1.350) (1.135) (1.044) (1.148)

Un (Utility if Nader is elected)

δ̂n 53.348*** 70.081*** 61.006***
(1.617) (1.209) (1.484)

λ̂n 4.591*** 8.477*** 7.054*** 4.503***
(0.745) (1.135) (1.044) (0.735)

Ub (Utility if Bush is elected)

δ̂b 82.520*** 70.081*** 72.414***
(1.836) (1.209) (1.487)

λ̂b 12.620*** 8.477*** 7.054*** 12.466***
(1.501) (1.135) (1.044) (1.485)

K̂ 3.693***
(0.396)

ĉ 36.745***
(1.915)

γ̂ 1.038*** 1.051*** 1.139*** 1.038***
(0.066) (0.075) (0.083) (0.066)

N 602 602 602 602

Log-likelihood -8101.348 -8190.552 -8141.887 -8101.747

Likelihood ratio test 178.408*** 81.077*** 0.798

Notes: i.*, ** and *** represent statistical significance at the 10, 5 and 1% levels, respectively.
ii. Standard errors are in parentheses.
iii. “Unconstrained” provides the maximum likelihood estimate of the unconstrained SUR model.

voters are located between -3.704 and 4.233 on the liberal-conservative space. However, Figure

B1 only considers the interval of the liberal-conservative space ranging from -1 to 1. We do so

in order to clearly visualize when the estimated utilities intersect. Indeed, Kerry and Nader are

so close (xk = −0.422 and xn = −0.394) that it would have been difficult to visualize these

intersections if we had shown all the possible values taken by the respondents in the policy space.

The main objective of this Appendix is to fully understand why when the voters vote sincerely,
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the Downsian model predicts unrealistically that Nader will obtain 31.56 percent of the votes.

Thus, we focus on the situation wherein all the voters vote sincerely.

It is easy to see from Figure B1, that:

(i.) The voters whose bliss points are strictly higher than a2 ≃ 0.211 obtain the highest level of

utility with Bush. If so, these voters will vote for Bush. Then, according to the Downsian

model, the relative frequency of voters who will vote for Bush is Ŝb =
♯{i=1,...,N ; ai>a2}

N
≃

0.4468.

(ii.) The voters whose bliss points are strictly between a1 ≃ −0.408 and a2 ≃ 0.211 obtain the

highest level of utility with Nader. If so, these voters will vote for Nader. The relative

frequency of voters who will vote for Nader is then Ŝn = ♯{i=1,...,N ; a1<ai<a2}
N

≃ 0.3156.

(iii.) The voters whose bliss points are strictly less than a1 ≃ −0.408 obtain the highest level

of utility with Kerry. The relative frequency of voters who will vote for Kerry is then

Ŝk = ♯{i=1,...,N ; ai<a1}
N

≃ 0.2375.

Thus, the Downsian model predicts unrealistically that Nader will obtain 31.56 percent of

the vote (under the assumption of sincere voting) because he is located on the right of Kerry

(xn = −0.394 and xk = −0.422) and attracts all the voters located between a1 ≃ −0.408 and

a2 ≃ 0.211. This is an interval wherein a massive heap of voters are located as shown in Figure 3.

B.2 Support for each candidate according to the additive valence model

Using the locations of Kerry, Nader and Bush (xk = −0.422, xn = −0.394 and xb = 0.816)

and the estimated additive valence utility function parameters obtained in Column [3] of Table

4, Figure B2 describes the estimated additive valence utilities given by the three candidates. The

main objective is to understand why, even under the assumption of sincere voting, nobody will
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Figure B1: Estimated Downsian utility functions
Note: This Figure depicts the three estimated Downsian utilities in function of a obtained in Table 4. The (red) solid curve
depicts the estimated utility if Bush is elected. The (blue) dashed curve depicts the estimated utility if Kerry is elected.
The (green) dotdash curve depicts the estimated utility if Nader is elected. The locations of Kerry, Nader and Bush are
xk = −0.422, xn = −0.394 and xb = 0.816, respectively. Finally, a1 ≃ −0.408 and a2 ≃ 0.211.

vote for Nader.

It is easy to see from Figure B2 that:

(i.) The voters whose bliss points are strictly higher than a1 ≃ 0.022 obtain the highest level of

utility with Bush. If so, these voters will vote for Bush. Then, according to the Downsian

model, the relative frequency of voters who will vote for Bush is Ŝb =
♯{i=1,...,N ; ai>a1}

N
≃

0.5249.

(ii.) The voters whose bliss points are strictly less than a1 ≃ 0.022 obtain the highest level

of utility with Kerry. The relative frequency of voters who will vote for Kerry is then

Ŝk = ♯{i=1,...,N ; ai<a1}
N

≃ 0.4751.

The results are similar under the assumptions of sincere voting and strategic voting because

the locations of Kerry (xk = −0.422) and Nader (xn = −0.394) are very close, and Kerry has an

additive-valence advantage over Nader (δ̂k > δ̂n), as shown in Column [3] of Table 4. Consequently,
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the higher additive valence of Kerry implies a higher level of utility with Kerry than with Nader for

all voters. So even under the assumption of sincere voting, nobody will vote for Nader according

to the additive valence model.
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Figure B2: Estimated additive utility functions
Note: This Figure depicts the three estimated additive utilities in function of a obtained in Table 4. The (red) solid curve
depicts the estimated utility if Bush is elected. The (blue) dashed curve depicts the estimated utility if Kerry is elected.
The (green) dotdash curve depicts the estimated utility if Nader is elected. The locations of Kerry, Nader and Bush are
xk = −0.422, xn = −0.394 and xb = 0.816, respectively. Finally, a1 ≃ 0.022.
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