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Abstract

The usual approach to calibrate optimal tax formulae consists in using the observed suf-
ficient statistics, which is only correct as long as they correspond to the optimal sufficient
statistics. In the very general case where agents are heterogeneous in many dimensions,
we propose a new structural method (based on an allocation perturbation) from which we
derive the optimal income tax formula and its optimal sufficient statistics computed from
the observed ones. This allows us to quantify the error in the marginal tax rates entailed by
using observed rather than optimal sufficient statistics. On US data, we show that this error
can be considerable (up to 10 percentage points). We also call for a change of focus in the
empirical analysis of top tax rates. Since individuals are heterogeneous along multiple di-
mensions, one needs to estimate the elasticity of those whose income density has the fatter
tail.

Keywords: Optimal taxation, multidimensional screening problems, tax perturbation, allo-
cation perturbation, sufficient statistics.

∗Previous versions of this paper has circulated under the titles “Optimal Nonlinear Income Taxation with Mul-
tidimensional Types: The Case with Heterogeneous Behavioral Responses” (2014) and “Optimal Income Taxation
when Skills and Behavioral Elasticities are Heterogeneous” (2015). The authors acknowledge comments made by
Pierre Boyer, Craig Brett, Pierre Cahuc, Philippe Choné, Helmuth Cremer, Vidar Christiansen, Eric Danan, André
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I Introduction

The optimal tax formulae of Mirrlees (1971) have become a cornerstone of the public fi-

nance literature. A feature that makes these formulae particularly attractive is that they can

easily be empirically implemented through the so-called “sufficient statistics”or so most re-

searchers would argue (e.g., Saez (2001, 2002), Chetty (2012)). In this paper, we explain why

the implementation of the optimal tax schedule using these sufficient statistics is generally im-

proper, and we point out to their correct implementation in a general optimal tax framework

that involves multidimensional individual heterogeneity. To do so, we propose a new struc-

tural method that uses calculus of variation based on an “allocation perturbation”. It relies on

a pooling function that characterizes individuals with distinct characteristics (e.g., skills and

taxable income elasticities) who earn the same income. We treat the population as composed of

distinct groups, which are subsets of individuals with the same vector of characteristics except

for skills. Our allocation perturbation method allows us to derive a structural optimal tax for-

mula (i.e. a formula expressed in terms of the policy-invariant primitives of the model) that we

can reformulate as an ABC tax formula à la Diamond (1998), in which each term results from a

very specific averaging procedure.

From this structural tax formula, we are able to find the income tax formula based on op-

timal sufficient statistics (which differ from the observed statistics). We then show how to

recover this formula using the widespread “tax perturbation”method and proceed to compare

both methods. While more intuitive, the tax perturbation requires restrictions not only on the

tax function that is perturbed, but also on the way the allocation is affected by the tax perturba-

tion. As the allocation is endogenous, imposing restrictions on it is ad-hoc. This is the internal

inconsistency of the tax perturbation approach. Conversely, our allocation perturbation method

requires a mild assumption on preferences and some restrictions on the perturbed allocation.

It therefore does not suffer from the internal inconsistency of the tax perturbation approach.

More importantly, we show that simple extensions of the usual “tax perturbation”approach

to the multidimensional case lead to improper definitions of the sufficient statistics and that the

structural tax formula is needed for proper calibration. First, a group-specific corrective term is

required to calibrate the tax schedule with estimated sufficient statistics. This term encapsulates

the circular process which is inherent to the nonlinear tax schedule, and nevertheless neglected

in the applied literature. Second, one has to follow a specific averaging procedure, which is a

far cry from the simple extension of the unidimensional case that would consist in computing

the simple average of every estimated sufficient statistic and then multiplying each average

by the same corrective term. Instead, every optimal sufficient statistic at any income level

is a weighted average that requires as many corrective terms as there are groups in which

individuals earn this income level and group-specific densities as weights. Remarkably, this

procedure highlights the importance of composition effects which make every weighted average

of corrected sufficient statistic distinct in the actual and optimal economies.
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Empirically, we show, using US Current Population Survey data, that implementing the op-

timal tax formula with sufficient statistics computed in the actual economy rather than in the

optimal one can have dramatic consequences. Our results highlight that this is already true in

the unidimensional case, but that multidimensional heterogeneity makes things worse, as the

bias has (i) a greater magnitude and (ii) plays in different directions at different points of the

income distribution. We also show that neglecting multidimensional heterogeneity strongly

biases the optimal tax schedule. Last but not least, we call for a change of focus in the empir-

ical analysis of top tax rates. Since individuals are heterogeneous along multiple dimensions,

one needs to estimate the elasticity of those whose income density has the fatter tail. To il-

lustrate this point, we assume that each group has a distinct taxable income elasticity and an

unbounded Pareto conditional skill distribution (as observed empirically). If the asymptotic

Pareto coefficients differ across groups, only the income elasticity of the group with the fatter-

tailed Pareto distribution matters for calculating the asymptotic tax rate. This elasticity can

be drastically different from the average taxable income elasticity among, e.g., the top 1%. In

the literature, asymptotic tax rates are typically calibrated using this average elasticity among

high income earners (Saez et al., 2012, Piketty and Saez, 2013), which may lead to erroneous

recommendations.

Last but not least, a strength of our paper is that our method is general enough to solve a

large set of adverse selection problems for which it is crucial, but challenging, to include mul-

tidimensional heterogeneity. We show that our framework encompasses many policy-oriented

applications. It can be interpreted to derive the nonlinear optimal income tax schedules,1 e.g.,

when individuals earn labor income and non-labor income (capital income, income from rent-

ing out property, etc.), or when the income of households is jointly taxed.

Related literature

The first contribution of our paper is theoretical: Our paper is the first to allow for a very

general form of pooling in screening models where individuals differ along many unobserved

characteristics and perform a single action (here, intensive labor supply decision). The usual

approach to these models relies on the assumption that the action only depends on a one-

dimensional aggregation of the multidimensional unobserved heterogeneity. This is the case,

for instance, in models of optimal income taxation such as those proposed in Brett and Wey-

mark (2003), Boadway et al. (2002), Choné and Laroque (2010), Lockwood and Weinzierl (2015),

Rothschild and Scheuer (2013, 2016, 2014), Scheuer (2013), Gomes et al. (2014) and Scheuer

(2014). By contrast, we relax this assumption (in Subsection III.1, we address its implications in

details and compare our approach to those adopted in the aforemetioned literature). Since our

method does no rely on an aggregator, we are able to simultaneously consider, in an optimal

income tax model, heterogeneity in income and heterogeneity in behavioral elasticities.

1Beyond optimal tax problems, our model can be applied to the nonlinear monopoly pricing problem in a more
general framework than Laffont et al. (1987).
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Random participation models make up another strand of the literature where multidimen-

sional heterogeneity is taken into account, although in a very specific way. In these models,

individuals differ in skill and in a cost of participation (Rochet and Stole, 2002, Kleven et al.,

2009, Jacquet et al., 2013) or of migration (Lehmann et al., 2014, Blumkin et al., 2014) and this

latter dimension of heterogeneity matters only for the participation/migration margin. In these

papers, the one-dimensional aggregation implies that individuals who earn the same income

are characterized by the same level of aggregated characteristics and are therefore constrained

to react identically to any tax reform. While departing from this restriction, we show (in an

appendix available upon request) that our model can readily be extended to include a random

participation constraint.

In parallel, a growing literature (e.g. Golosov et al. (2014), Kleven et al. (2009), Renes and

Zoutman (2015)) studies screening problems when individuals differ along a number of charac-

teristics that is equal to (or lower than) the number of actions they perform (e.g., labor income

and saving decision). In contrast to our paper, this literature neglects pooling.2

The second contribution of our paper is empirical, and relates to the “sufficient statistics”

literature (e.g., Piketty (1997), Saez (2001), Chetty (2009), Diamond and Saez (2011), Piketty and

Saez (2013), Hendren (2014), Scheuer and Werning (2016)). In a nutshell, this approach consists

in focusing on empirical combinations of the primitives of the model, known as “sufficient

statistics”, that can be estimated using data, rather than considering the full economic structure

(Chetty, 2009). While this may be enough to indicate the direction of desirable tax reforms

(Golosov et al., 2014), we show that a structural tax formula is required to correctly implement

the tax schedule.

The sufficient statistics approach derives the optimal tax schedule by using a tax perturba-

tion, i.e. by considering the effects of an infinitesimal tax reform on the government’s objective.

The tax perturbation method is a way to provide a clear intuition for the economics behind the

optimal tax formula.3 However, this method is unclear about the treatments of pooling and of

the circularity process and it faces the above-mentioned internal inconsistency.4 By contrast,

we rely on an allocation perturbation method that avoids these mathematical weaknesses by di-

rectly optimizing over smooth incentive-compatible allocations. Our method also encapsulates

the circularity in a clear-cut way.5

The remainder of the paper is organized as follows. In Section II, we present the model

2In Rochet and Choné (1998), individuals endowed with distinct characteristics choose the same action due to
a strong conflict between the incentive constraints and a participation constraint. The latter arises because they
consider a nonlinear pricing model where consumers have the same outside option and are then “bunched ”in this
outside option. This is irrelevant in our framework.

3Saez (2001) does not advocate the tax perturbation as a formal proof but calls it a ”heuristic proof” and rigor-
ously shows that a rewriting of Mirrlees (1971)’s structural tax formula leads to a tax formula in terms of sufficient
statistics. His proof is however only valid under a one-dimensional unobserved heterogeneity. Our paper provides
a formal derivation of the sufficient statistics-based tax formula with multidimensional heterogeneity.

4This circularity process is neglected in Piketty (1997) and Diamond and Saez (2011) and considered in Saez
(2001), Hendren (2014), Golosov et al. (2014) and in the appendix of Piketty and Saez (2013).

5This involves incorporating the circularity process in the elasticities (as in Jacquet et al. (2013)) rather than in the
income density (as in Saez (2001)). Our way is becoming more widespread, see e.g. Scheuer and Werning (2016).
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and emphasize its flexibility by showing how it can easily be adapted to study several policy

applications. In Section III, we derive the structural tax formula using our allocation pertur-

bation method and we show that optimal marginal tax rates are positive under utilitarian and

maximin social preferences. In Section IV, we express the optimal tax formula in terms of suf-

ficient statistics, specify the correct averaging procedure of the latter and discuss the respective

virtues and limitations of the tax perturbation and allocation perturbation approaches. We also

study the asymptotic tax rate. In Section V, we numerically quantify the crucial role played by

multidimensional heterogeneity and highlight the biases due to the typical miscalculations of

the sufficient statistics. We conclude in the last section.

II Model

Individuals differ along their skill level w ∈ R+ and along a vector of characteristics de-

noted θ ∈ Θ. Labor supply elasticity can be one of these individual characteristics. We call

a group a subset of individuals with the same θ. We assume that the set of groups Θ is com-

pact and measurable with a cumulative distribution function (CDF) denoted µ(·). The set Θ

can be finite or infinite and may be of any dimension. The distribution µ(.) of the population

across the different groups may be continuous, but it may also exhibit mass points. Among in-

dividuals of the same group θ, skills are continuously distributed according to the conditional

skill density f (·|θ) which is positive over the support R+. The conditional CDF is denoted

F(w|θ) def≡
∫ w

0 f (x|θ)dx. The size of the total population is normalized to one, so that:∫
θ∈Θ

{∫ +∞

0
f (w|θ)dw

}
dµ(θ) = 1.

Following Mirrlees (1971), the government levies a tax T(.) which is a non-linear function of

pre-tax income y (for short, income hereafter) and does not depend on individual types (w, θ).

II.1 Individual choices

Every worker of type (w, θ) derives utility from consumption c and disutility from effort.

Effort captures the quantity as well as the intensity of labor supply. Let v(y; w, θ) be the disutil-

ity of a worker of type (w, θ) to obtain income y ≥ 0 with vy(·), vyy(·) > 0 > vw(·).6 Disutility

is increasing and convex in income, and decreasing in skill w. This is because earning a given

income requires less effort to a more productive agent.7 Individual preferences are described

by the twice differentiable utility function:

U (c, y; w, θ) = u(c)− v(y; w, θ) with u′(·) > 0 ≥ u′′(·). (1)

6For any function f of a single variable, we denote f ′ its first derivative and f ′′ its second derivative. For any
function g of multiple variables x, y, ..., we denote gx its first-order partial derivative with respect to x and gxy its
second-order partial derivative with respect to x and y, etc.

7The latter assumption is standard. For instance, when income is equal to the product of effort and skill, y =
w × ` and when preferences depend on effort `, we get v(y; w, θ) ≡ V

( y
w ; θ

)
with V`(·) > 0,V``(·) > 0. The

assumption V` > 0 implies υy > 0 > υw. The assumption V`` > 0 implies υyy > 0 > υyw.
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Additive separable utility as in (1) is commonly assumed in optimal taxation and in the adverse

selection literature with multidimensional heterogeneity (e.g., Rochet (1985), Wilson (1993),

Rochet and Choné (1998), Rochet and Stole (2002)). The marginal rate of substitution between

income y and consumption c is:

M (c, y; w, θ)
def≡ −

Uy(c, y; w, θ)

Uc(c, y; w, θ)
=

vy(y; w, θ)

u′(c)
. (2)

We impose a single-crossing (Spence-Mirrlees) condition within each group of individuals

endowed with the same θ. Starting from any positive level of consumption and pre-tax income,

more skilled workers need to be compensated with a smaller increase in their consumption to

accept a unit rise in income. We therefore assume that for each θ ∈ Θ and for any bundle (c, y),

the marginal rate of substitution M (c, y; w, θ) is a decreasing function of the skill level:

∀(c, y, θ) ∈ R+ ×R+ ×Θ : Mw(c, y; w, θ) < 0 ⇔ vyw(y; w, θ) < 0. (3)

We also impose that the marginal rate of substitution decreases from plus infinity to zero.

This is a kind of INADA condition that will appear technically practical. For the ease of the

presentation, we give the following definitions:

Definition 1. A function a : R+ 7→ R is “smoothly increasing”if it is differentiable with ∀x ∈ R+,

a′(x) > 0, a′(0) = 0 and lim
x 7→∞

a′(x) = +∞.

A function a : R+ 7→ R is “smoothly decreasing” if it is differentiable with ∀x ∈ R+, a′(x) < 0,

lim
x 7→0

a′(x) = +∞ and lim
x 7→∞

a′(x) = 0.

A smoothly increasing (decreasing) function is not only strictly increasing (decreasing), it is

also differentiable with a strictly positive (negative) derivative everywhere and its derivative

maps the positive real line onto itself. It is straightforward to verify that the combination of

two smoothly increasing (decreasing) functions is a smoothly increasing function and that the

reciprocal of a smoothly increasing (decreasing) function is a smoothly increasing (decreasing)

function.8 We therefore assume that:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y) ∈ R+ ×
R+, function w 7→M (c, y; w, θ) is smoothly decreasing in skill.

This assumption is automatically verified in the case where (1) can be rewritten as:

U (c, y; w, θ) = u(c)− θ

1 + θ

( y
w

)1+ 1
θ

with θ > 0 and u′(·) > 0 ≥ u′′(·). (4)

We henceforth refer to this specification of preferences as the isoelastic ones. There θ stands for

the individual Frisch labor supply elasticity, hereafter, “labor supply elasticity”. The marginal

rate of substitution equals M (c, y; w, θ) = y
1
θ /[u′(c) w1+ 1

θ ] and is smoothly decreasing in w.

8What we call a smoothly increasing (decreasing) function is also called an increasing (decreasing) diffeomor-
phism for which the derivative maps the positive real line onto itself.

5



Under preferences (1), an individual of type (w, θ), facing the nonlinear income tax y 7→
T(y), solves:

max
y

U (y− T(y), y; w, θ) (5)

We call Y(w, θ) the solution to program (5),9 C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption

of an individual of type (w, θ) and U(w, θ) = u(C(w, θ))− v (Y(w, θ); w, θ) her utility. When

the tax function is differentiable, the first-order condition associated to (5) implies with (2) that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (6)

II.2 The government

The government’s budget constraint takes the form:∫
θ∈Θ

{∫ +∞

0
[Y(w, θ)− C(w, θ)] f (w|θ)dw

}
dµ(θ) ≥ E (7)

where E ≥ 0 is an exogenous amount of public expenditures. Turning now to the government’s

objective function, we adopt a general welfarist criterion that sums over all types of individuals

an increasing and weakly concave transformation Φ(U; w, θ) of individuals’ utility level U. The

government’s objective is:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ); w, θ) f (w|θ)dw

}
dµ(θ). (8)

This welfarist specification allows Φ to vary with individual types (w, θ) which makes it very

general. It encompasses the case of weighted utilitarian preferences with type-specific weights

denoted ϕ(w, θ), so that Φ(U; w, θ)) ≡ ϕ(w, θ) ·U. The social objective is then:∫
θ∈Θ

{∫ +∞

0
ϕ (w, θ) U(w, θ) f (w|θ)dw

}
dµ(θ). (9a)

As particular cases, the latter objective is utilitarist if ϕ(w, θ) is constant and Φ(U; w, θ)) ≡ U

and it turns out to be maximin (or Rawlsian) if ϕ(0, θ) > 0 while ϕ(w, θ) = 0 ∀w > 0. Our

welfarist criterion also encompasses the Bergson-Samuelson criterion which is a concave trans-

formation of utility that does not depend on individuals’ type (w, θ), i.e. Φ(U; w, θ) does not

vary with its two last arguments. The Bergson-Samuelson criterion takes the form:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ)) f (w|θ)dw

}
dµ(θ). (9b)

Let λ > 0 be the Lagrange multiplier associated with the budget constraint (7) which can

be interpreted as the shadow price of government’s funds. Following Saez (2001), we define

the marginal social welfare weight associated with workers of type (w, θ) by:

g(w, θ) =
u′(C(w, θ)) ΦU (U(w, θ); w, θ)

λ
. (10)

9If the maximization program (5) admits multiple solutions, we make the tie-breaking assumption that individ-
uals choose among their best options the income level preferred by the government, i.e. the one with the largest tax
liability.
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The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) in terms

of public funds.10

II.3 Possible applications

The framework presented in the previous two subsections is general enough to encompass a

large set of applications. We now present several of these applications. Although our approach

extends beyond tax theory11, all the applications in this subsection concern optimal income

taxation problems. In each case, we explain what y, w, θ represent so that the interpretation

of the results of our general framework is straightforward. All proofs and propositions in the

following sections are valid in each case, they are simply to be interpreted in a different way.

Importantly, we state that Assumption 1 holds in each application, at the cost of at most very

mild assumptions. The reader interested in the core model but not in its various applications

can skip this subsection.

Optimal income taxation with heterogeneous skills and labor supply elasticities

In this case, all the tax schedules that we obtain in the paper are to be interpreted with y

as the (pre-tax) labor income and, using isoelastic individual’s preferences (4), with the fol-

lowing two dimensions of heterogeneity: skill w and labor supply elasticity θ. As previously

mentioned, Assumption 1 is then automatically satisfied.

Optimal joint taxation of labor and non-labor income

In this case, individuals have two sources of taxable income: a non-labor income z and a

labor income y− z. Those incomes are jointly taxed and the tax function does not distinguish

between both incomes.12 In this case, y is the total taxable income and we interpret θ as the

ability to earn non-labor income z and w as the skill.

For an individual of skill w who belongs to group θ, let V(y− z, z; w, θ) be the joint disutility

of earning y− z and z, with Vy−z, Vz > 0. Individuals of type (w, θ) then solve:

max
y,z

u(y− T(y))−V(y− z, z; w, θ).

where two decision variables appear instead of one variable in program (5). This program can

be solved sequentially, the first step being the choice of non-labor income z for a given taxable

income y. The disutility function in (1) is then retrieved by defining:

v(y; w, θ)
def≡ min

z
V(y− z, z; w, θ). (11)

10We can easily extend our analysis to non-welfarist social criteria following the method of generalized marginal
social welfare weights developed in Saez and Stantcheva (2016) to reflect non-welfarist views of justice.

11To illustrate this, we apply our model, in an appendix available upon request, to a nonlinear pricing model
where a monopolist (the principal) observes a one-dimensional action (how much consumers are demanding of the
single commodity it sells), and where the unobserved characteristics of the consumers (the agents) are multidimen-
sional.

12This applies, for instance, in countries like France where entrepreneurial income and income received from
renting property are jointly taxed with labor income.
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Here, Assumption 1 is satisfied whenever the second-order derivatives of V(·) are such that

vyw < 0.13 This inequality holds when z is exogenous. For instance, z = θ when θ are rents

perceived by landlords who have inherited the property they rent. When z is endogenous, this

inequality holds when V(y− z, z; w, θ) = V`(y− z; w, θ) + Vz(z; θ) with V`(·; w, θ) and Vz(·; θ)

increasing and convex, and V`
yw < 0.14

Optimal joint income taxation of couples

The joint income taxation of couples is a variant of the previous application, in which y− z

is the labor income of one individual and z is the one of his/her partner. The tax does not

distinguish between y− z and z and only depends on the sum of both incomes, y (as in France,

Germany and the US). We redefine w and θ as the respective skill level of each member of the

couple. The optimal tax schedules derived in this paper are then interpreted as the optimal tax

schedules when the couple is the tax unit and each partner decides along the intensive margin.

So far, previous attempts in the literature (Kleven et al. (2007) and Cremer et al. (2012)) have

stopped short of obtaining these nonlinear tax schedules.

Optimal income taxation with tax avoidance

In this application, w is the skill and θ is the ability to avoid taxation. We assume that tax

enforcement (penalty, monitoring, etc.) is given. We denote z the sheltered labor income (i.e.

income that is not taxed at all) and y + z the (total) labor income. The tax only depends on the

taxable income y. Consumption becomes c + z, with c = y− T(y) being the after-tax income.

Preferences (1) now become quasi-linear in consumption, c + z − V (y + z, z; w, θ), where

Vy+z, Vy+z y+z > 0 and Vz, Vzz > 0.15 The disutility function in (1) is then retrieved by defining:

v (y; w, θ)
def≡ min

z
V (y + z, z; w, θ)− z

assuming that the second-order derivatives of V(·) are such that vyw (y; w, θ) < 0 to ensure that

Assumption 1 holds. We will get back to this application when deriving the optimal tax profile

on US data, in Section V. In that section, θ will denote the taxable income elasticity, which

depends on the individual ability to avoid taxation.

III A structural approach to the tax formula

This section studies the design of the optimal second-best allocation, while the next one will

focus on the relation between the optimal tax schedule and empirically meaningful statistics.

13The envelope theorem induces that vy = Vy−z and vw = Vw. Hence, one obtains vy > 0 > vw, whenever
Vy−z > 0 > Vw, which are natural assumptions.

14We note z∗(y; w, θ) the solution to (11). Differentiating the first-order condition V`
y = Vz

z leads to ∂z∗/∂w =

V`
yw/(V`

yy + Vz
zz), which is negative by the convexity of V`(·; w, θ) and of Vz(·; θ) and by V`

yw < 0. Therefore, as
vy(y; w, θ) = Vz

z (z∗(w, θ), θ) from the envelope theorem and first-order condition, the convexity of Vz(·; θ) induces
that vyw < 0.

15For a given labor income, increasing the amount of sheltered income is costly (i.e., requires more effort). This
is a standard assumption in papers that incorporate avoidance effects for optimal tax design, see Piketty and Saez
(2013, Section 4.3.).
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III.1 Incentive-Compatible Allocations

In this subsection, we develop a method to characterizes incentive-compatible allocations

when unobserved characteristics (w, θ) are multidimensional. We start by stating the incentive

constraints. Since the individual’s objective (5) is maximized for y = Y(w, θ), we have:

∀(w, θ, ỹ) ∈ R+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U (ỹ− T(ỹ), ỹ; w, θ) .

Taking ỹ = Y(w̃, θ̃) leads to the following set of incentive constraints:

∀(w, w̃, θ, θ̃) ∈ R2
+ ×Θ2 U (C(w, θ), Y(w, θ); w, θ) ≥ U

(
C(w̃, θ̃), Y(w̃, θ̃); w, θ

)
. (12)

Equation (12) states that individuals of type (w, θ) prefer the bundle (C(w, θ), Y(w, θ)) they

have chosen to any other bundle (C(w̃, θ̃), Y(w̃, θ̃)) intended for any other type (w̃, θ̃) of work-

ers. The usual taxation principle (Hammond, 1979, Guesnerie, 1995) holds. For the govern-

ment, it is equivalent to choose a non-linear income tax, taking individual choices (5) into ac-

count or to directly select an allocation satisfying the incentive-compatible constraints (12). We

follow the second approach in this section and characterize first the set of incentive-compatible

allocations.

Within-Group Incentive Constraints

An incentive-compatible allocation has to satisfy (12). It thus has to verify for each group θ

the following set of “within-group incentive constraints”:

∀(w, w̃, θ) ∈ R2
+ ×Θ U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(w̃, θ), Y(w̃, θ); w, θ) . (13)

For each θ, characterizing the within-group allocations w 7→ (C(w, θ), Y(w, θ)) that verify

the within-group incentive constraints (13) is the same problem as characterizing incentive-

compatible allocations when unobserved heterogeneity is one-dimensional. This is due to

within-group single-crossing Assumption 1. Under this assumption, the set of incentive con-

straints can be transformed into a monotonicity constraint and a differential equation that we

retrieve in Lemmas 1 and 2 below.

Lemma 1. Under Assumption 1, the function w 7→ Y(w, θ) is nondecreasing for each θ ∈ Θ.

Appendix A.1 provides the proof. Note that Y(·; θ) being nondecreasing, it may exhibit

discontinuities over a countable set and it may also exhibit bunching where individuals in

the same group but endowed with different skill levels earn the same income. It is however

standard, in one-dimensional models, to consider only smooth allocations where these two

pathologies do not arise and to follow the so-called “first-order approach” , e.g. Salanié (2011).

We thus make the following smoothness assumption:

Assumption 2 (Smooth allocations). In each group θ, w 7→ Y(w, θ) is smoothly increasing.

9



According to Assumption 2, for each income level y ∈ R+ and for each group θ ∈ Θ, there

exists a single skill level w such that only individuals of that skill level within group θ earn

income y = Y(w, θ). In the present paper, we define pooling as the situation where the same

income level is earned by individuals in different groups. As soon as one studies multidimen-

sional heterogeneity in models with a single observable action, pooling cannot be neglected.

Note that situations where people who earn the same income are identical in all their dimen-

sions of heterogeneity except their skills are undoubtedly very rare empirically. Assumption 2

rules out the latter type of situations16, while it implies that pooling is unavoidable. Assump-

tion 2 holds, for instance, under the isoelastic individual preferences (4) when the income tax

function is linear. Consequently, by continuity, as soon as the marginal tax rates do not vary

too much, Assumption 2 holds. The following lemma provides the differential equation or

first-order incentive constraint.17

Lemma 2. Under Assumptions 1 and 2, for each θ, the mapping w 7→ U(w, θ) is differentiable with:

U̇(w, θ) = Uw(C(w, θ), Y(w, θ); w, θ) = −vw (Y(w, θ); w, θ) . (14a)

Moreover, Equation (14a) is equivalent to:

Ċ(w, θ)

Ẏ(w, θ)
= M (C(w, θ), Y(w, θ); w, θ) . (14b)

Equation (14a) is the first-order incentive-compatible equation within group θ. The usual

proof in the one dimensional context is adapted in Appendix A.2. Integrating (14a) leads to:

U(w, θ) = U(0, θ)−
∫ w

0
vw (Y(x, θ); x, θ) dx. (14c)

If the government were able to observe the group θ to which each taxpayer belongs to, the

government would propose group-specific income tax schedules T(·; θ). We would then only

need to take into account the within-group incentive constraints (13).18 The observation of

θ would improve the possibility for the government to redistribute income as highlighted in

the so-called tagging literature (see e.g., Akerlof (1978), Boadway and Pestieau (2006), Cremer

et al. (2010), Mankiw and Weinzierl (2010)). In contrast, our paper does not consider tagging so

that the government does not condition taxes on the group index θ. We thus need to describe

how the various within-group allocations ω 7→ (Y(ω, θ), C(ω, θ)) need to be set to be mutually

incentive-compatible and to verify the full set of incentive constraints (12). This is the pooling

issue that we now address.
16In the vein of the model with one dimension of heterogeneity, this specif situation where individuals in the

same group but with different skill levels earn the same income can be called bunching. This type of situation never
appear in all our simulations (see Section V).

17We use a dot to denote the derivative with respect to w for a fixed θ.
18To be more precise, this remark holds only if the government was furthermore allowed to condition taxation on

θ. For instance, despite the fact that the government can observe whether a taxpayer is a woman or a man, gender-
based taxation (Alesina et al., 2011) is in practice ruled out for horizontal equity reasons. A similar issue arises when
conditioning income taxation on individuals’ height (Mankiw and Weinzierl, 2010).
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Pooling Types across θ-Groups at each Income Level

Chose a reference group θ0 ∈ Θ, a skill level w and another group θ. Individuals of type

(w, θ0) earn income Y(w, θ0). According to the smoothness Assumption 2, each group-specific

allocation Y(·, θ) : w 7→ Y(w, θ) is an increasing one-to-one function that maps the positive

real line onto itself. Therefore, there must exist a single skill level, hereafter denoted W(w, θ),

so that individuals of the other group θ endowed with that skill level W(w, θ) must get the

same income level Y(w, θ0) as individuals of type (w, θ0), i.e. Y(W(w, θ), θ) = Y(w, θ0). We call

W(., .) the pooling function. For each θ ∈ Θ, the pooling function combines two smoothly in-

creasing functions, namely ω
Y(·,θ0)7−→ Y(ω, θ0)

Y−1(·,θ)7−→ W(ω, θ). The pooling function is therefore

also a smoothly increasing function in skill w. It obviously verifies W(w, θ0) ≡ w. Provided

that the allocation is incentive-compatible, it is not possible from (12) that individuals of type

(W(w, θ), θ) and individuals of type (w, θ0) obtain the same income Y(w, θ0) but distinct con-

sumption levels. Therefore, for each (w, θ), we must simultaneously have:

Y(W(w, θ), θ) ≡ Y(w, θ0) and C(W(w, θ), θ) ≡ C(w, θ0). (15)

One can retrieve the entire incentive-compatible allocation for all groups if one knows the

pooling function W(·, ·) and the allocation ω 7→ (Y(ω, θ0), C(ω, θ0)) designed for the reference

group. Furthermore, to determine the pooling function, one only needs the allocation designed

for the reference group, as explained by the following lemma.

Lemma 3. Under Assumptions 1 and 2, along an incentive-compatible allocation, the bundle designed

for individuals of type (W(w, θ), θ) coincides with the bundle (C(w, θ0), Y(w, θ0)) designed for indi-

viduals of type (w, θ0), where W(w, θ) verifies the following pooling condition:

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); W(w, θ), θ) . (16)

Proof According to Assumption 1, M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ)
admits exactly one solution in ω. Differentiating in w both sides of each two equalities in (15)
leads to:

Ẏ(W(w, θ), θ) Ẇ(w, θ) = Ẏ(w, θ0) and Ċ(W(w, θ), θ) Ẇ(w, θ) = Ċ(w, θ0)

where Ẇ(w, θ) denotes the partial derivative of W with respect to the skill level. Hence,

Ċ(W(w, θ), θ)

Ẏ(W(w, θ), θ)
=

Ċ(w, θ0)

Ẏ(w, θ0)
.

According to Lemma 2, Equation (14b) holds, which implies (16). �

Intuitively, if individuals of type (w, θ0) and of type (W(w, θ), θ) choose the same income

Y(w, θ0), they must face the same marginal tax rate T′(Y(w, θ0)). Hence, from the first-order

condition (6), they must face the same marginal rate of substitution, as highlighted in (16).

A key point here is that, because of the within-group single-crossing condition (Assumption

1), the equation M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ) admits exactly one
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solution in ω. Hence, the previous equation fully characterizes the pooling function W(·, θ)

from the allocation ω 7→ (C(ω, θ), Y(ω, θ)) specific to the reference group θ0. The following

lemma, which is proved in Appendix A.3, provides a sufficient condition for the allocation to

be incentive-compatible.

Lemma 4. Let w 7→ (C(w, θ0), Y(w, θ0)) be a within-group allocation that verifies Assumption 2 and

the within-group incentive-compatible Equation (14b). For each w ∈ R+ and each group θ ∈ Θ, let

W(w, θ) be the unique skill level ω that solves the pooling condition M (C(w, θ0), Y(w, θ0); w, θ0) =

M (C(w, θ0), Y(w, θ0); ω, θ). There exists a unique incentive-compatible allocation (w, θ) 7→ (C(w, θ),

Y(w, θ)) the restriction of which to group θ0 is w 7→ (C(w, θ0), Y(w, θ0)) and it verifies Assumption 2

if and only if, for each θ, w 7→W(w, θ) is smoothly increasing.

Lemma 4 guarantees that if Y(w, θ0) is smoothly increasing in w and if, for each θ, the pool-

ing function denoted W(w, θ) is also smoothly increasing in w, then the allocation is incentive-

compatible. Assumption 2 together with the assumption that W(·, θ) is smoothly increasing

plays, in our analysis, a role similar to the monotonicity or second-order incentive-compatibility

condition of the Mirrleesian “first-order approach” with one dimension of unobserved hetero-

geneity.

In what follows, we therefore select the allocation only for the reference group θ0 and as-

sume that the triggered allocations for the other groups verify Assumption 2. Using Equation

(2), the pooling condition (16) can be rewritten as:

vy (Y(w, θ0); w, θ0)

u′(C(w, θ0))
=

vy (Y(w, θ0); W(w, θ), θ)

u′(C(w, θ0))

which can be simplified as:

vy (Y(w, θ0); w, θ0) = vy (Y(w, θ0); W(w, θ), θ) . (17)

Therefore, the pooling function W(·, θ) that enables to retrieve (C(·, θ), Y(·, θ)) from the

allocation of the reference group (C(·, θ0), Y(·, θ0)) depends on Y(·, θ). This endogeneity of the

pooling function is a major difference with the previous literature as we will discuss in the next

subsection.19

Consider, as an illustration, the case where individual preferences are isoelastic as in (4).

The equality in Equation (17) implies that the pooling function is:20

W(w, θ) =

(
w

1+θ0
θ0 · (Y(w, θ0))

1
θ−

1
θ0

) θ
1+θ

.

The pooling function thus depends on the choice of Y(·, θ0) whenever the different groups are

endowed with distinct labor supply elasticities (i.e. when θ 6= θ0). Note that if one takes for the

reference group θ0 = max {θ ∈ Θ}, it is then sufficient to impose that w 7→ Y(w, θ0) is smoothly

19Moreover, the pooling function does not depend on C(·, θ), a simplification that relies on the assumption that
the utility function (1) is additively separable.”

20Substituting (4) in (17) yields Y(w, θ0)
1/θ0 w−(1+θ0)/θ0 = Y(w, θ0)

1/θW(w, θ)−(1+θ)/θ .
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increasing to ensure that the pooling function w 7→ W(., θ) is smoothly increasing as well for

each θ.21 Lemma 4 is then valid and Assumption 2 is verified.

Related literature

In many previous tax models with multidimensional unobserved heterogeneity, the deci-

sions along the intensive margin are assumed to depend only on a one-dimensional aggrega-

tion of characteristics. This implies the counter-factual prediction that all individuals earning

the same income level exhibit identical behavioral elasticities. To clarify this point, let t denote

the vector of unobserved characteristics and assume that intensive decisions depend only on a

one-dimensional aggregator denoted w = Ξ(t), so that individuals of type t have preferences

U (c, y; Ξ(t)) over consumption and income and solve max
y

U (y− T(y), y; Ξ(t)). All individ-

uals with the same w = Ξ(t) are thus facing the same decision program. They are therefore

making the same intensive decisions and are equally responsive to tax reforms. Moreover, the

pooling function is simply obtained by inverting the aggregator Ξ(·). Therefore, it does not

depend on the chosen variables Y(., .) and C(., .). Therefore, if one wants a model where in-

dividuals differ also in their behavioral responses, the pooling function must depend on the

allocation.

Brett and Weymark (2003), Boadway et al. (2002), Choné and Laroque (2010), Lockwood and

Weinzierl (2015) explicitly assume that labor supply decisions depend only on an exogenous

unidimensional combination w = Ξ(t) of two unobserved characteristics t. Therefore, two

individuals who earn the same income cannot have distinct labor supply elasticities despite

their distinct characteristics. The additional heterogeneity only matters for the computation of

social marginal weights.

Rothschild and Scheuer (2013, 2016, 2014), Scheuer (2013, 2014) and Gomes et al. (2014)

study optimal income taxes with several sectors. In their models, individuals need to choose

how to split their labor effort between different sectors. The productivity of individuals in

each sector composes the vector of unobserved characteristics t. The private and social returns

of labor effort in each sector are functions of the aggregate amount of labor in each sector,

thereby allowing for rich patterns of technological complementaries and externalities between

these sectors. However, individuals’ preferences are specified in such a way that once the

individual allocation of effort across sectors is chosen, the total amount of effort of an individual

of characteristics t depends only on a one-dimensional aggregation Ξ(t; p) of types t and of

prices p, i.e. private returns of effort in each sector. Hence, individuals who earn the same

income cannot have distinct skills, thereby distinct labor supply elasticities.

In random participation models with endogenous participation (Rochet and Stole, 2002,

Kleven et al., 2009, Jacquet et al., 2013) or in optimal income tax models with migration (Blumkin

et al., 2014, Lehmann et al., 2014), individuals differ in skills and in costs of participation (mi-

21As θ0 ≥ θ, one has that 1
θ > 1

θ0
so (Y(w, θ0))

1
θ >

1
θ0 is smoothly increasing in skill w for each group θ if and only if

Y(·, θ0) is smoothly increasing. As θ, θ0 > 0, W(w, θ) is therefore also smoothly increasing in skill w for each group
θ.

13



gration). The cost of participation (migration) drives the individual participation (migration)

decision while the level of skill determines the intensive labor supply decision. Therefore,

people with an identical skill level earn the same income, whatever their participation (or mi-

gration) costs. The aggregator is then reduced to w = Ξ(w, θ) and again, workers earning the

same income are constrained to react identically to any tax reform.

III.2 Optimal structural tax formula

We now derive the optimal marginal tax rates as a function of the policy-invariant primi-

tives or structural parameters of the model, which are the individual utility function U (·, ·; w, θ),

the government’s objective function Φ(·; w, θ) and the distributions of characteristics f (·|θ) and

µ(·). Like in the model with one dimension of heterogeneity (see e.g., Saez (2001)), obtaining

such a structural tax formula is crucial if one wants to implement the model with data.22 The

government’s problem consists in finding the incentive-compatible allocation that maximizes

the social objective (8) under the budget constraint (7).

Let C (û, y; w, θ) denote the consumption level the government needs to provide to a worker

of type (w, θ) who earns y to ensure she has a û utility level. Function C (·, y; w, θ) is the recip-

rocal of U (·, y; w, θ) and:

Cu(û, y; w, θ) =
1

u′ (c)
and Cy(û, y; w, θ) =

vy (y; w, θ)

u′ (c)
(18)

where the various derivatives are evaluated at c = C (û, y; w, θ). Let λ denote the multiplier

associated to the budget constraint (7), the Lagrangian L of the government’s problem is:

L
def≡
∫∫ [

Y(w, θ)− C (U(w, θ), Y(w, θ); w, θ) +
Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ). (19)

The government’s problem consists in finding the best allocation that verifies the incentive

constraints (12). Following the usual first-order approach, we consider a “relaxed” problem

where the government maximizes over the set of allocations that verify the first-order incen-

tive constraint (14a) for each group and the pooling condition (17).23 According to Lemma 4,

whenever the solution to this relaxed problem verifies Assumption 2 and the implied pooling

function is, for each group θ, smoothly increasing in skill w, it also solves the problem with all

incentive-compatible constraints.

When the unobserved heterogeneity is one-dimensional, the usual method to derive the

necessary conditions is to construct a Hamiltonian and to apply the Pontryagin principle. In

our multidimensional environment, the pooling condition (17) induces constraints on state and

control variables which hold at endogenous skill levels. This is the reason why we use the

22According to (Saez, 2001, p. 223), the optimal tax formula derived by Saez (2001) “cannot be directly applied
using empirical income distribution because the income distribution is affected by taxation. Therefore, it is useful to
come back to the Mirrlees formulation and use an exogenous skill distribution to perform numerical simulations.”

23To solve one-dimensional tax models, one usually assume that income is increasing with skill. This is called
the first-order approach. Therefore, solving the multidimensional tax model under Assumption 2, as done with our
allocation perturbation method, is (somewhat) also a first-order approach.
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calculus of variation and consider a set of perturbations of the allocation in the reference group.

The cornerstone of our method is the pooling condition (17) that we use to deduce how the

allocation in the other groups are perturbed. Thanks to this condition, we can thus compute

the Gâteaux derivatives of the Lagrangian (19) in the direction of these perturbations. Equating

these Gâteaux derivatives to zero lead to an optimal structural tax formula which gives the

optimal marginal tax rates as a function of the primitives of the model. To save on notations,

we from now on use the more compact notation 〈w, θ〉when the various functions are evaluated

for types (w, θ) at income Y(w, θ), utility U(w, θ) and consumption C(w, θ). We then get:

Proposition 1. Under Assumptions 1 and 2, the optimal structural tax formula verifies:

T′ (Y(w, θ0))

1− T′ (Y(w, θ0))

∫
θ∈Θ

vy 〈W(w, θ), θ〉
−W(w, θ) vyw 〈W(w, θ), θ〉 W(w, θ) f (W(w, θ)|θ) dµ(θ)

= u′ (C(w, θ0))
∫∫

θ∈Θ,x≥W(w,θ)

(
1

u′(C(x, θ))
− ΦU(U(x, θ); x, θ)

λ

)
f (x|θ)dx dµ(θ) (20a)

for all w ∈ R+ and:∫∫
θ∈Θ,x∈R+

(
ΦU(U(x, θ); x, θ)

λ
− 1

u′(C(x, θ))

)
f (x|θ)dx dµ(θ) = 0. (20b)

Proof To derive (20b), we consider a set of allocation perturbations indexed by ∆ ∈ R and de-

noted (C̃(w, θ; ∆), Ỹ(w, θ; ∆), Ũ(w, θ; ∆)
def≡ U

(
C̃(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
), which consist, for

each type (x, θ) ∈ R+ ×Θ, in no change in Y(x, θ) and in a uniform change in U(x, θ), there-

fore in u(C(x, θ)) by an amount ∆. Hence, we get for each ∆ that Ũ(w, θ; ∆)
def≡ U(w, θ) + ∆,

Ỹ(w, θ; ∆)
def≡ Y(w, θ) and C̃(w, θ; ∆)

def≡ C
(
Ũ(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
. These perturbations

preserve incentive-compatibility (12). According to (19), the perturbed Lagrangian is:

L̃ (∆)
def≡
∫∫ [

Ỹ(w, θ; ∆)− C
(
Ũ(w, θ; ∆), Ỹ(w, θ; ∆); w, θ

)
+

Φ
(
Ũ(w, θ; ∆); w, θ

)
λ

]
f (w|θ)dw dµ(θ).

If the allocation is optimal, the above perturbations do not affect the Lagrangian. Thus,
by equating the Gâteaux derivative of the Lagrangian in the direction described by the above
perturbations, i.e. the derivative of the perturbed Lagrangian L̃ (·) with respect to ∆, at ∆ = 0,
to zero, we obtain an equation that characterizes the optimal tax system. Using the first equality
in (18), this Gâteaux derivative of the Lagrangian is:

L̃ ′(0) =
∫∫

θ∈Θ,x∈R+

(
ΦU (U(x, θ); x, θ)

λ
− 1

u′ (C(x, θ))

)
f (x|θ)dx dµ(θ).

Equating this derivative to zero leads to (20b).

To derive (20a) at a given skill level w, we consider a set of allocation perturbations, in-

dexed by t ∈ R and δ ∈ R+, that we denote Ĉ(w, θ; t, δ) ,Ŷ(w, θ; t, δ) and Û(w, θ; t, δ)
def≡

U
(
Ĉ(w, θ; t, δ), Ŷ(w, θ; t, δ); w, θ

)
) where t stands for the size of the perturbation, and δ is the

length of the skill interval where, in the reference group, the perturbation of incomes takes
place. Following Lemma 4, we define the allocation perturbations from their restriction to the
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reference group θ0 and then study the impact of these perturbations on the allocation in every
other group. The perturbations of incomes in the reference group are defined by:

Ŷ(x, θ0; t, δ)
def≡ Y(x, θ0) + t ∆Y(x, θ0; δ)

where ∆Y(·, θ0; δ) is a continuously differentiable function defined on R+ such that ∆Y(·, θ0; δ) >
0 for x ∈ (w − δ, w) and is nil otherwise. Incomes in the reference group remain unchanged

x

Y(x, θ0)

w− δ w

Ŷ(x, θ0; t, δ)
def≡ Y(x, θ0)

+t∆Y(x, θ0; δ)

Initial allocation
Perturbed allocation

Figure 1: The perturbation of incomes in the reference group θ0

outside the skill interval (w− δ, w) and are smoothly increased (decreased) inside the skill in-
terval (w− δ, w) if t > 0 (if t < 0), as illustrated in Figure 1. It is worth noting that the perturbed
income function remains differentiable with respect to skill w since ∆Y(·, ·, δ) is differentiable.
Moreover, from Assumption 2, Y(·, θ0) admits a positive derivative everywhere, so Ẏ(·, θ0) is
bounded away from 0 for all x ∈ [w− δ, w]. Therefore, provided that t is small enough, which
we assume in the rest of the proof, Ŷ(·, θ0; t, δ) has also a positive derivative everywhere and
therefore verifies Assumption 2.

Let us in addition assume that the utility of the lowest skilled individuals in the reference
group U(0, θ0; t, δ) is not perturbed and write it as U(0, θ0). Therefore, according to the first-
order incentive constraint (14c), the perturbed utility function in the reference group is:

Û(x, θ0; t, δ)
def≡ U(0, θ0)−

∫ x

0
υw
(
Ŷ(ω, θ0; t, δ); ω, θ0

)
dω. (21a)

From the pooling condition (17), as incomes Y(·, θ0; t, δ) in the reference group remain un-
changed outside the skill interval (w− δ, w), the pooling function W(·, θ0; t, δ) is not perturbed
outside the skill interval (w− δ, w). Therefore, incomes Y(·, θ; t, δ) in any group θ are not mod-
ified outside the skill interval (W(w− δ, θ), W(w, θ)), and we must have (See Figure 2):

Ŷ(x, θ; t, δ) = Y(x, θ) if x ∈ [0, W(w− δ, θ)] ∪ [W(w, θ),+∞) . (21b)

Since incomes in the reference group are not perturbed for all skill x below w− δ, the pool-
ing function is also unchanged below w − δ, so that the same types remain pooled together.
Hence we get in group θ that for all x ≤W(w− δ, θ):

Ĉ(x, θ; t, δ) = C(x, θ) and Û(x, θ; t, δ) = U(x, θ). (21c)

For all skills x > W(w− δ, θ), the change in utility obtained using the first-order incentive
constraint (14c) is:

Û(x, θ; t, δ)−U(x, θ) = −
∫ x

0

[
υw
(
Ŷ(ω, θ; t, δ); ω, θ

)
− υw (Y(ω, θ); ω, θ)

]
dω. (21d)
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x

Y(x, θ)

W(w− δ, θ) W(w, θ)

For t > 0

Initial allocation
Perturbed allocation

Figure 2: The perturbation of incomes in the other groups

Since incomes Ŷ(·, θ; t, δ) are only perturbed inside (W(w− δ, θ)), W(w, θ)), for all skills x that
belong to this interval, using (21b), we get:

Û(x, θ; t, δ)−U(x, θ) =
∫ x

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω. (21e)

Moreover, for all skills x above W(w, θ), we have:

Û(x, θ; t, δ)−U(x, θ) =
∫ W(w,θ)

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω. (21f)

Hence utility in the other group does not change below W(w − δ, θ) and changes by a uni-

w

U(x, θ)

W(w− δ, θ) W(w, θ)

For t > 0

Initial allocation
Perturbed allocation

Figure 3: The perturbation of utilities

form amount above W(w, θ), as illustrated in Figure 3. As incomes above skill W(w, θ) are
unchanged, this implies that, for all skill x above W(w, θ), the modifications in utility U(x, θ)
occur only through changes of the utility u(C(x, θ)) derived from consumption. Using (21f),
this utility therefore changes uniformly by:

u
(
Ĉ(x, θ; t, δ)

)
− u (C(x, θ)) =

∫ W(w,θ)

W(w−δ,θ)

[
υw (Y(ω, θ); ω, θ)− υw

(
Ŷ(ω, θ; t, δ); ω, θ

)]
dω (21g)

which determines the perturbation of consumption for skill levels above W(w, θ). We now
determine how the perturbations of incomes Y(·, θ) in each group within the skill interval
(W(w− δ, θ), W(w, θ)) need to be set to ensure that the perturbed allocations remain incentive-
compatible. For that purpose, we note that for all skill levels x above w, as incomes in the
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reference group are not perturbed, the pooling function is also unchanged, so that the same
types remain pooled together. Hence, according to (15):

∀t, ∀x ≥ w Ŷ(W(x, θ), θ; t, δ) = Ŷ(x, θ0; t, δ) and Ĉ(W(x, θ), θ; t, δ) = Ĉ(x, θ0; t, δ).

This implies that, in all groups, the uniform change in utility that occurs for all skill lev-
els above W(w, θ) must be identical across groups, so that: u

(
Ĉ(x, θ0; t, δ)

)
− u (C(x, θ0)) =

u
(
Ĉ(W(x, θ), θ; t, δ)

)
− u (C(W(x, θ), θ)), and so, using (14c) and (21g), we obtain:∫ w

w−δ

[
υw
(
Ŷ(ω, θ0; t, δ); ω, θ

)
− υw (Y(ω, θ0); ω, θ)

]
dω (21h)

=
∫ W(w,θ)

W(w−δ,θ)

[
υw
(
Ŷ(ω, θ; t, δ); ω, θ

)
− υw (Y(ω, θ); ω, θ)

]
dω.

The latter equation links the perturbed incomes Ŷ(·, θ; t, δ) in all groups within the interval
of skills (W(w− δ, θ), W(w, θ)) and the perturbed incomes Ŷ(·, θ0; t, δ) in the reference group.

The perturbed Lagrangian is:

L̂ (t, δ)
def≡
∫∫

θ∈Θ,w∈R+

[
Ŷ(w, θ; t, δ)− C

(
Û(w, θ; t, δ), Ŷ(w, θ; t, δ); w, θ

)
(22)

+
Φ
(
Û(w, θ; t, δ); w, θ

)
λ

]
f (w|θ)dw dµ(θ).

If the allocation is optimal, the derivative of this Lagrangian with respect to t must be nil at
t = 0. Appendix A.4 shows that the limit of Condition (22) when δ goes to zero leads to:

∫
θ∈Θ

1−
υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

υyw(Y(W(w, θ), θ); W(w, θ), θ)
f (W(w, θ)|θ) dµ(θ) (23)

=
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU < x, θ >

λ
− 1

u′〈x, θ〉

)
f (x|θ)dx dµ(θ).

An intuitive and short rephrasing of the proof follows. Consider the approximation where
in each group θ, incomes within skill intervals [W(w− δ, θ)(θ), W(w, θ)] are changed by a uni-
form amount denoted t× ∆Y(θ) instead of the smooth perturbation Ŷ(·, θ; t, δ)− Y(·, θ). Ap-
pendix A.4 shows that this approximation has only second-order implications that can be ne-

glected when t and δ tend to zero. Let δw(θ)
def≡ W(w, θ)−W(w− δ; θ) denote the width of the

skill interval where incomes are perturbed in group θ. Let t× ∆U denote the uniform amount
by which utility is changed for all types x above W(w, θ). Equation (21f) implies that the rate
of change in incomes ∆Y(θ) and the size δw(θ) of the skill interval over which incomes are
perturbed are linked to the rate of change in utility ∆U through:

∀θ ∈ Θ ∆U = −υyw〈W(w, θ), θ〉 ∆Y(θ) δw(θ). (24)

Under the aforementioned approximation and using (18), the derivative of the Lagrangian (22)
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with respect to t can be approximated, when δ tends zero, by:

∂L

∂t
'

∫
θ∈Θ

[
1−

υy〈W(w, θ), θ〉
u′(C(W(w, θ); θ))

]
f (W(w, θ)|θ)dµ(θ) ∆Y(θ) δw(θ)

+ ∆U

∫∫
θ∈Θ,x≥W(w,θ)

(
ΦU〈x, θ〉

λ
− 1

u′(C(x, θ))

)
f (x|θ)dxdµ(θ)

= ∆U


∫

θ∈Θ

1−
υy〈W(w, θ), θ〉

u′(C(W(w, θ); θ))

−υyw〈W(w, θ), θ〉 f (W(w, θ)|θ) dµ(θ)

+
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU〈x, θ〉

λ
− 1

u′(C(x, θ))

)
f (x|θ)dx dµ(θ)

}
where the second equality follows from (24). Dividing by ∆U leads to (23). Using (2), (6) and
(15), we can rewrite (23) as:

T′(Y(w, θ0))
∫

θ∈Θ

1
υyw(Y(W(w, θ), θ); W(w, θ), θ)

f (W(w, θ)|θ) dµ(θ)

=
∫∫

θ∈Θ,x≥W(w,θ

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
f (x|θ)dx dµ(θ).

Using again (2), (6) and (15) leads to (20a). �

The tax formula of Proposition 1 generalizes the structural optimal income tax formula de-

rived by Mirrlees (1971) to multidimensional individual characteristics. When the unobserved

heterogeneity has only one dimension, we show in Appendix A.5, Equations (20a) and (20b)

simplify to:

T′ 〈w〉
1− T′ 〈w〉 ·

vy 〈w〉
−w vyw 〈w〉

w f (w) = u′ 〈w〉
∫ ∞

w

(
1

u′ 〈x〉 −
ΦU 〈x〉

λ

)
f (x) dx (25a)

0 =
∫ ∞

0

(
1

u′ 〈x〉 −
ΦU 〈x〉

λ

)
f (x) dx. (25b)

Comparing these equations with Equations (20a) and (20b) makes clear that reducing the tax

problem to one dimension of heterogeneity implies that the integrals over θ-groups disappear.

With multidimensional heterogeneity, one needs to aggregate the terms of the formula for in-

dividuals of the different groups who pool at the same level of income. This is made possible

thanks to our characterization of the pooling function in Lemmas 3 and 4.

The optimal tax formula of Proposition 1 depends only on structural parameters. To high-

light its advantages, we now study this structural formula with isoelastic and quasilinear pref-

erences. Isoelasticity implies that the term vy/(−w vyw) under the integral in the left-hand side

of (20a) becomes θ/(1 + θ), which is policy-invariant. Under quasilinearity, u(.) in Equation

(1) is linear as in Diamond (1998), and we get:

Proposition 2. If preferences are quasilinear and isoelastic, i.e., if U (c, y; w, θ) = c− θ
1+θ

( y
w

)1+ 1
θ
,
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the optimal tax system is given by:

T′(Y(w, θ0))

1− T′(Y(w, θ0))
= A(w)×B(w)× C(w) where: (26a)

Efficiency : A(w) =

∫
θ∈Θ W(w, θ) f (W(w, θ)|θ)dµ(θ)∫

θ∈Θ
θ

1 + θ
W(w, θ) f (W(w, θ)|θ)dµ(θ)

(26b)

Equity : B(w) =

∫∫
θ∈Θ,x≥W(w,θ)

(
1− Φu(U(x, θ); x, θ)

λ

)
f (x|θ)dx dµ(θ)∫∫

θ∈Θ,x≥W(w,θ)
f (x|θ)dx dµ(θ)

(26c)

Distribution : C(w) =

∫∫
θ∈Θ,x≥W(w,θ)

f (x|θ)dx dµ(θ)∫
θ∈Θ W(w, θ) f (W(w, θ)|θ)dµ(θ)

. (26d)

In the absence of group heterogeneity, that is, if Θ is reduced to a singleton, then (26a)-(26d)

correspond exactly to the ABC formula of Diamond (1998, Equation (10)) with an efficiency

term, an equity term and a distribution one and the usual interpretation prevails. However,

the generalization to our multidimensional case is not straightforward.

First, the efficiency term A(w) is not a mere rewriting of Diamond (1998)’s efficiency term,

(1 + θ)/θ, where θ would be the mean elasticity θ across groups. Our tax formula reveals that

A(w) is actually the harmonic mean,24 in each θ group, of Diamond’s efficiency term (1 + θ)/θ.

Interestingly, by the concavity of x 7→ x/(1 + x) and the Jensen inequality, A(w) is lower

than (1 + θ)/θ. Therefore, incorrectly taking heterogeneous elasticities θ into account leads,

ceteris paribus, to an upward bias in the marginal tax rates when implementing the tax formula.

Moreover, in the harmonic averaging procedure, the weights are not simply the densities of

people who earn the relevant level of income in each group θ, but the products of a skill level

and a density, W(w, θ) f (W(w, θ)|θ).
The equity term B(w) is the arithmetic mean of the equity terms 1− (ΦU(U(x, θ); x, θ)/λ)

over all individuals whose skill x is above W(w, θ). The difference with Diamond (1998) is that

the mean is computed across groups.

In our model with θ groups, the distribution term C(w) is the weighted mean of local Pareto

parameters across groups at skill level W(w, θ).25 Note that the weights are not simply the

skill density at W(w, θ) but are again equal to the products of this skill level and the associated

density, W(w, θ) f (W(w, θ)|θ).

24The harmonic mean is
∫

p(x)dx∫
x−1 p(x)dx where x is a random variable and p(x) are weights. The arithmetic mean is

simply
∫

x p(x)dx∫
p(x)dx .

25P(ω, θ)
def≡

∫
x≥ω

f (x|θ)dx
ω f (ω|θ) denotes the local Pareto parameter of the skill distribution within group θ at skill ω.

From the definition of local Pareto parameters, we have:
∫

x≥ω f (x|θ)dx = P (ω) ω f (ω|θ). Therefore, we get:

C(w) =
∫

θ∈Θ P (W(w, θ))
W(w,θ) f (W(w,θ)|θ)∫

θ∈Θ W(w,θ) f (W(w,θ)|θ) dµ(θ)
dµ(θ). If heterogeneity were one-dimensional, the distribution

term would be given by a single local Pareto parameter.
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III.3 Signing optimal marginal tax rates

With multidimensional heterogeneity, the literature has highlighted that negative marginal

tax rates can prevail. In Boadway et al. (2002), Choné and Laroque (2010) and Lockwood and

Weinzierl (2015), individuals differ along their skills and preferences for effort, and the social

planner has weighted utilitarian preferences (see (9a)). In this context, individuals who pool at

the same income level Y(w, θ0) are characterized by different social marginal welfare weights

g(W(w, θ), θ) (according to (10)). Within each group θ, the social marginal utility of consump-

tion, ΦU(U(w, θ); w, θ), is decreasing in skill due to the concavity of the general welfarist cri-

terion Φ(U; w, θ). However, the arithmetic mean of ΦU(U; w, θ), that appears in the right-

hand side of (20a),26 may not be decreasing in income because it aggregates ΦU(U; w, θ) across

groups. This composition effect may reduce marginal tax rates (Lockwood and Weinzierl, 2015)

and may even induce them to become negative (Boadway et al., 2002, Choné and Laroque,

2010). For instance, this happens when some groups undervalued in the social objective are

overrepresented at low income levels. In this case, individuals at the bottom of the income dis-

tribution receive lower social welfare weights than individuals with larger income levels. This

yields negative marginal tax rates at the bottom of the distribution.

Proposition 3 shows that the result of positive marginal tax rates found in Mirrlees (1971)

with a single dimension of heterogeneity and utilitarian preferences still holds with an endoge-

nous pooling function, provided that there is no composition effect. This is illustrated with

utilitarian and maximin social preferences.

Proposition 3. Under utilitarian or maximin social preferences, optimal marginal tax rates are positive.

Proof. Let u′ 〈w, θ0〉 I(w) denote the right-hand side of (20a). Under utilitarian preferences,

Φu = 1 and we get: I(w)
def≡
∫

x≥W(w,θ)

(
1

u′〈x,θ〉 −
1
λ

)
·
(∫

θ f ( x| θ) dµ (θ)
)

dx. The derivative of

I(w) has the sign of 1/λ − 1/u′ 〈x, θ〉, which is decreasing in w because of the concavity of

u(·). Moreover, lim
w 7→∞

I(w) = 0 and Equation (20b) imply that I(0) = 0. Therefore, I(w) first

increases and then decreases. It is thus positive for all (interior) skill levels. Since vyw < 0 from

(1), optimal marginal tax rates are positive.

Under maximin, one has U(x, θ) > U(0, θ) for all x > 0 from (14a). Therefore, within each

group, the most deserving individuals are those whose skill w = 0. The maximin objective

implies ΦU 〈x, θ〉 = 0 for all x > 0. Thereby, I(w)
def≡
∫

x≥W(w,θ)
1

u′〈x,θ〉 ·
∫

θ f ( x| θ) dµ (θ) dx for

all x > 0, which leads to positive marginal tax rates.

IV A tax perturbation approach to the tax formula

In this section, we express the optimal tax formula in terms of sufficient statistics. In Ap-

pendix A.6, we derive this formula from the structural one (see Proposition 1) obtained with
26In the right-hand side of (20a), 1/u′(C(x, θ))− ΦU(U(x, θ); x, θ)/λ is equal to (1− g(x, θ))/u′(C(x, θ)). Indi-

viduals who pool at the same income get the same consumption, hence the same marginal utility of consumption.
As a result, their heterogeneity appears in the heterogeneous social welfare weights g(x, θ) of individuals who pool
at the same income level.
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our allocation perturbation method. In this section, we derive it following the tax perturbation

approach of Saez (2001). The section is divided in three parts. We first define the required

sufficient statistics and clarify the assumptions on which the tax perturbation approach relies.

Second, using this approach, we derive the optimal tax formula in terms of these sufficient

statistics, specify the correct averaging procedure of the latter (highlighting the importance of

composition effects along the way) and discuss the respective virtues and limitations of the tax

perturbation and allocation perturbation approaches. Third, we study the asymptotic tax rate.

IV.1 Sufficient statistics

The sufficient statitics we need are individual elasticities and income effects. We define the

compensated elasticity using a compensated tax reform, which modifies the marginal tax rate by a

constant amount τ around income Y(w, θ), while leaving unchanged the level of tax at this level

of income. The income responses are defined as the responses to a small lump-sum change ρ

in tax liability. The tax function then becomes T(Y, θ)− τ(Y− Y(w, θ))− ρ and individuals of

type (w, θ) solve the following program:

max
y

u (y− T(y) + τ(y−Y(w, θ)) + ρ)− v(y; w, θ). (27)

The first-order condition can be written as Y (y, τ, ρ; w, θ) = 0, where:

Y (y, τ, ρ; w, θ)
def≡
(
1− T′ (y) + τ

)
· u′ (y− T(y) + τ(y−Y(w, θ)) + ρ)− v′y (y; w, θ) .(28)

To apply the implicit function theorem to Y (Y(w, θ), 0, 0; w, θ) = 0 in order to obtain the suffi-

cient statistics, the tax perturbation approach requires the following assumptions:

Assumption 3. .

i) The tax function T(·) is twice differentiable.

ii) For all (w, θ) ∈ R+ ×Θ, the second-order condition holds strictly: Yy (Y(w, θ), 0, 0; w, θ) < 0.

iii) For all (w, θ) ∈ R+ × Θ, the function y 7→ u(y − T(y)) − v(y; w, θ) admits a unique global

maximum.

Part i) ensures that First-Order Condition (28) is differentiable. Part ii) guarantees it is in-

vertible in income y. Under i) and ii), one can apply the implicit function theorem to (28) and

describe how a local maximum of Program (27) changes after a tax reform. In general, since the

tax function is nonlinear, the function y 7→ u(y− T(y))− v(y; w, θ) may admit several global

maxima among which individuals of type (w, θ) are indifferent. Each small tax reform may

lead to a distinct unique global maximum. Moving from a global maximum to another in the

wake of a tax reform is associated with a jump in the chosen labor supply and income. In this

case, the optimal allocation does no longer smoothly respond to an infinitesimal tax perturba-

tion. The tax perturbation approach relies on Part iii) of Assumption 3 to ensure that it is not the
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case and that the first-order condition corresponds to a unique global maximum. Applying the

implicit function theorem to Y (Y(w, θ), 0, 0; w, θ) = 0 yields ∂Y/∂x = −Yx/YY for x = w, τ, ρ,

where the various derivatives are evaluated at (Y(w, θ), 0, 0; w, θ) with:27

Yy(Y, 0, 0; w, θ) = −T′′(Y) · u′(Y− T(Y)) + (1− T′)2 · u′′(Y− T(Y))− vyy(Y; w, θ). (29)

From these expressions, we define sufficient statistics, which are elasticities and income re-

sponses for individuals in group θ whose skill w is such that they choose income y = Y(w, θ) in

the absence of tax reform (i.e. τ = ρ = 0). These elasticities and income responses encapsulate

all responses that appear with a nonlinear income tax, so that we call them total elasticities or

responses. The total compensated elasticity of earnings with respect to the marginal retention

rate 1− T′(.) is:

ε(y; θ)
def≡ 1− T′ (y)

y
∂Y
∂τ

= −
vy

y ·Yy
> 0 (30a)

which is positive since vy > 0 > Yy. The total elasticity of earnings with respect to skill w is:

α(y; θ)
def≡ w

y
∂Y(w, θ)

∂w
=

w
y

Ẏ(w, θ) =
w vyw

Y(w, θ) Yy
> 0. (30b)

This elasticity is positive from Assumption 1 and Equation (3). We define the total income

response of earnings to a lump-sum change ρ in the level of income or, for short, the total

income effect by:

η(y; θ)
def≡ ∂Y

∂ρ
= −

u′′ · vy

u′ ·Yy
≤ 0 (30c)

which is non-positive due to the additive separability of individual preferences (1) and vy >

0 > Yy. Leisure is therefore a normal good.

Elasticities and income response (30a)-(30c) differ from those usually found in the optimal

tax literature by the presence, in their denominators, of a term T′′ (y) · u′(Y − T(y)) which is

incorporated in YY (see Equation (29)). This term accounts for the nonlinearity of the income

tax schedule. To understand why, let ε?(y; θ), α?(y; θ) and η?(y; θ) be the compensated elasticity

of earnings with respect to the marginal retention rate, the elasticity of earnings with respect to

skill and the income effect, when T′′ = 0 in (30a)-(30c). These would be the relevant concepts

if the tax function were linear. We call these terms the direct responses and denote them with

stars for superscripts. An exogenous change in either w, τ or ρ induces a direct change in

earnings ∆1y proportional to the direct response ε?(y; θ), α?(y; θ) and η?(y; θ), respectively.

However, when the tax schedule is nonlinear, the direct response in earnings Y modifies the

marginal tax rate by ∆1T′ = T′′ (y)×∆1y, thereby inducing a further change in earnings ∆2y =

−y T′′
1−T′ ε

?(y; θ)∆1y. This second change in earnings, in turn, induces a further modification in

the marginal tax rate T′′ (y)× ∆2y which induces an additional change in earnings. Therefore,

a circular process takes place. The income level determines the marginal tax rate through the

27From (28), we have Yw = υ′′y,w(Y(w, θ); w, θ), Yτ = u′(C(w, θ)), Yρ = (1− T′)u′′(C(w, θ)).
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tax function, and the marginal tax rate affects the income level through the substitution effects.

Using the identity 1 + x + x2 + x3 + ... = 1
1−x , the total effect is given by:

∆y =
∞

∑
i=1

∆iy = ∆1y
∞

∑
i=1

(
−y

T′′

1− T′
ε?(y; θ)

)i−1

= ∆1y
1− T′(y)

1− T′(y) + yT′′(y)ε?(y; θ)
.

Our definitions of elasticities and income responses capture the total effect, i.e., including the

circular process, of slightly modifying either the marginal tax rate, the skill level or the income

level. The term T′′ (y) · u′(Y − T(y)) in YY (see Equation (29)) testifies about this. The litera-

ture (e.g. Saez (2001), Golosov et al. (2014), Hendren (2014)) instead considers only the direct

effects by assuming that marginal tax rates are exogenous in the computation of elasticities and

income responses, thereby taking T′′(Y(w, θ)) = 0 in (30a)-(30c). In this case, the tax schedule

is locally linear hence total and direct responses coincide. Equations (31a)-(31c) explicit the

multiplicative term by which direct responses must be timed to obtain total responses.28

ε(y; θ) =
1− T′(y)

1− T′(y) + y T′′(y) ε?(y; θ)
ε?(y; θ) (31a)

α(y; θ) =
1− T′(y)

1− T′(y) + y T′′(y) ε?(y; θ)
α?(y; θ) (31b)

η(y; θ) =
1− T′(y)

1− T′(y) + y T′′(y) ε?(y; θ)
η?(y; θ) (31c)

where the corrective term is
1− T′(y)

1− T′(y) + y T′′(y) ε?(y; θ)
. (31d)

Using various methods, it is the direct responses that the empirical literature estimates (e.g.,

Saez et al. (2012), Kleven and Waseem (2013)). Obtaining the proper total responses from these

estimates is not straightforward because the corrective term in (31d) depends on (i) the cur-

vature T′′(.) of the tax function which is different in the actual economy where the sufficient

statistics are estimated and in the optimal economy and (ii) the direct compensated elasticity

which is typically heterogeneous across individuals who pool at the same income level.

IV.2 Tax formula and discussion

Tax formula, averaging procedure and composition effects

We now derive the optimal tax formula using the tax perturbation approach. With h(·|θ)
denoting the conditional income density within group θ and H(·|θ) the corresponding cumu-

lative income distribution function, we obtain the equality H(Y(w, θ)|θ) ≡
∫ w

x=0 f (x|θ)dx, for

all skills w and groups θ. Differentiating both sides of this equality with respect to w and using

(30b), we note that the two densities are linked by:

h(Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h(Y(w, θ)|θ) = w f (w|θ)
α(Y(w, θ); θ)

. (32)

28These three equalities are obtained from the definitions of elasticities, income responses and from (6). From (28)
and (30a) we can write:

ε(y, θ)

ε?(y, θ)
=

(1− T′(y))2u′′(c)− vyy(y; w, θ)

−T′′(y)u′(c) + (1− T′(y))2u′′(c)− vyy(y; w, θ)

Substituting (2) into (6) and using the definition of ε?(y, θ) yields (31a). The same goes for Equations (31b) and (31c).
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Therefore, 1−H(Y(w,θ)|θ)
Y(w,θ) h(Y(w,θ)|θ) = α(Y(w, θ); θ)

∫ ∞
x≥w f (x|θ)dx

w f (w|θ) .

Proposition 4. Under assumptions 1 and 3, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
· 1− Ĥ(y)

yĥ(y)
·
(

1−

∫ ∞
y [ĝ(z) + η̂(z) · T′(z)] · ĥ(z)dz

1− Ĥ(y)

)
(33a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) · T′(z)

]
· ĥ(z)dz. (33b)

where

ε̂(y)
def
≡
∫

θ∈Θ ε (y; θ) h (y|θ) dµ(θ)∫
θ∈Θ h (y|θ) dµ(θ)

(34a)

ĥ(y)
def
≡
∫

θ∈Θ
h (y|θ) dµ(θ). (34b)

ĝ(y)
def
≡
∫

θ∈Θ g
(
Y−1(y, θ), θ

)
h (y|θ) dµ(θ)∫

θ∈Θ h (y|θ) dµ(θ)
(34c)

η̂(y)
def
≡
∫

θ∈Θ η (y; θ) h (y|θ) dµ(θ)∫
θ∈Θ h (y|θ) dµ(θ)

. (34d)

In Proposition 4, ε̂(y) is the mean total compensated elasticity at income level y, ĥ(y) is the

unconditional income density at income y, ĝ(y) is the mean marginal social welfare weight at

income y, and η̂(y) is the mean total income effect at income level y.29

Proof of Proposition 4. We consider an infinitesimal tax reform that consists in a uniform de-

crease ∆τ of the marginal tax rates in a small interval [y− δy, y] of the income distribution. It

implies that the tax levels uniformly decrease by an amount ∆ρ = ∆τ× δy for all income levels

z above y.30 Figure 4 depicts this tax reform. We now describe its effects in two steps.

y

c
Initial Tax schedule
Perturbed Tax schedule

y− δy y

∆ρ = ∆τ · δy

∆τ

Substitution effects Mechanical effects
Income effects

Figure 4: The tax reform

First, the lower marginal tax rate implies that individuals whose income before the tax

reforms lies within [y− δy, y] increase their income by ∆y(θ) due to a substitution effect:

∆y(θ) =
y

1− T′(y)
· ε(y; θ) · ∆τ

29Note that ĝ(y) is the mean of the marginal social welfare weights defined in Equation (10), for individuals in
groups θ whose skills, denoted w = Y−1(y, θ), are such that they all earn the same income y = Y(w, θ).

30We compute the first-order effects when ∆τ, ∆ρ > 0. The case when ∆τ, ∆ρ < 0 is symmetric. This proof
neglects the bunching and gaps created by the kinks generated, at incomes y− δ and y, by the tax reform.
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where (30a) has been used. Note that we here use the total compensated elasticity ε(y; θ) and

not the direct one to take into account the circularity detailed in Section IV.1. This substitution

effect has only a second-order effect on the utility of these individuals. It however increases

their tax liability by:

T′(y) · ∆y =
T′(y)

1− T′(y)
· ε(y; θ) · y · ∆τ.

As there are
∫

θ∈Θ h(y|θ) · dµ(θ) · δy affected taxpayers, these substitution effects lead to a a rise

in tax revenue equal to:

T′(y)
1− T′(y)

∫
θ∈Θ

ε(y; θ) · y · h(y|θ) · dµ(θ) · ∆ρ =
T′(y)

1− T′(y)
· ε̂(y) · y · ĥ(y) · ∆ρ (35a)

where ∆ρ = ∆τ · δy, (34a) and (34b) have been used.

Second, individuals whose income levels were above y before the reform receive a trans-

fer ∆ρ with no change in their marginal tax rate. This has two consequences. First, in the

absence of any behavioral response from these workers, the government gets ∆ρ units of tax

receipts less from each of them. Because of this tax reduction, the social objective rises by

g
(
Y−1(z, θ), θ

)
, from (10). The resulting mechanical effect is equal to (−1 + g

(
Y−1(z, θ), θ

)
)∆ρ.

Second, each taxpayer with income above y is induced to work less through income effects. The

variation of the tax level ∆ρ triggers an income response of η(y; θ) · ∆ρ for each of them hence,

a change T′(y) · η(y; θ) ·∆ρ in their tax liability, where η(y; θ) is the total (rather than the direct)

income effect, see Section IV.1. The sum of the mechanical and income effects for each of these

individuals is: [
−1 + g

(
Y−1(z, θ), θ

)
+ T′(y) · η(y; θ)

]
· ∆ρ.

Summing these effects for the mass ĥ(z) of individuals who earn z, we get [ĝ(z) + T′ (z) · η̂(z)− 1] ·
ĥ(z) · ∆ρ where (34b)-(34d) have been used. Therefore, the sum of mechanical and income ef-

fects for all income levels above y gives:

∫ ∞

y

[
−1 + ĝ(z) + T′ (z)) · η̂(z)

]
· ĥ(z)dz · ∆ρ. (35b)

The tax reform we consider should have no first-order effect at the optimum. This implies that

the sum of (35a) and (35b) needs to be nil which leads to (33a).

To obtain (33b) using the tax perturbation approach, simply consider the effect of a uniform

increase in tax liability across the entire income distribution. This reform triggers mechanical

and income responses for all positive income as well as a loss of one in terms of tax revenue

on the entire population. If the tax schedule is optimal, the sum of these mechanical, income

responses and loss in tax revenue must be nil, i.e.∫ ∞

0

[
ĝ(z) + η̂(z) · T′(z)

]
· ĥ(z)dz− 1 = 0

which gives (33b).
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Equations (33a)-(33b) generalize the optimal tax formula based on sufficient statistics to

individuals with multidimensional characteristics. The optimal tax rate given in Equation (33a)

consists in three terms: i) the behavioral responses to taxes 1
ε̂(y) , ii) the shape of the income

distribution 1−Ĥ(y)
ĥ(y)

and iii) the social preferences and income effects 1−
∫ ∞

y [ĝ(z)+η̂(z)·T′(z)]ĥ(z)dz

1−Ĥ(y)
.

Saez (2001) discusses how the optimal tax rate is affected by each of these three terms in the

one-dimensional case. Shifting from the model with one dimension of heterogeneity to the

model with multiple dimensions leads to replacing the marginal social welfare weight, the

compensated elasticity and the income effect by their means calculated at a given income level.

Importantly, it is the mean of the total (rather than direct) compensated elasticity and income

effect that must be computed. The weights then correspond to the income density in (34c)-

(34d). This is more intuitive than using the direct elasticity and income effect, which implies to

encapsulate the circularity (described by (31a)-(31c)) in a so-called “virtual density” as in Saez

(2001), Equation (13).

Tax formula (33a) is not a closed-form expression because it depends on sufficient statistics

that are generally endogenous and not policy-invariant. In particular, the curvature of the tax

function T′′(·) affects total compensated elasticities and income effects (see Equation (31)). In

addition, multidimensional heterogeneity is a source of composition effects that add to the en-

dogeneity of the tax rate. Composition effects arise as soon as individuals who earn a given

income level are not the same in the actual and optimal economies. This implies that each suf-

ficient statistic of Equation (33a) takes distinct values at the optimum and when one estimates

it in the actual economy. Therefore, implementing Equation (33a) with real data is at the very

least questionable. This issue will be thoroughly examined in Subsection IV.3 for top incomes

and in Section V with real data for all income levels.

Equation (33b) is the sufficient statistics equivalent of the structural transversality condition

(20b). If income effects were assumed away, this condition implies that the weighted sum of

social welfare weights is equal to 1. In the presence of income effects, a uniform increase in tax

liability induces a change in tax revenue proportional to the marginal tax rate which explains

the presence of the term η̂(z) · T′(z).

Tax perturbation vs allocation perturbation

In Appendix A.6, we explain how the tax formula expressed in terms of sufficient statistics

(Equations (33a)-(33b)) can be recovered from the structural tax formula (Equations (20a)-(20b))

derived using mechanism design. Our structural approach validates the sufficient statistics for-

mula, which has never been done to this day in a multidimensional framework. More impor-

tantly, we identify the correct averaging procedure of the sufficient statistics ((34a)-(34d)) only

hinted at in Saez (2001), p.220. This procedure is far from intuitive: First, every direct sufficient

statistics, denoted with a ? in Equations (31a)-(31c), has to be multiplied by the group-specific

corrective term (31d) in order to obtain the total sufficient statistics. Then, one has to compute

the weighted average of every total sufficient statistics across groups, the weights being the
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conditional income density for each group. This is a far cry from the simple extension of the

unidimensional case that would consist in (i) computing the simple average of every direct

sufficient statistic and (ii) multiplying each result by the corrective term.

An important consequence of the endogeneity of the sufficient statistics is that their values

are bound to be different in the optimal economy and in the actual economy where they are

estimated. Using a formula based on the policy-invariant primitives of the model (Proposition

1) allows one to get around this problem when computing the optimal tax formula. In addition,

formulating the tax schedule in terms of structural parameters allows one to sign the optimal

marginal tax rates (Proposition 3), which is far from obvious with the tax formula in terms of

sufficient statistics.

We now discuss the respective virtues and limitations of the tax and allocation perturbation

approaches and highlight how both approaches relate to each other. While more intuitive, the

tax perturbation requires restrictions not only on the tax function that is perturbed (Part i of

Assumption 3) but also on the way the allocation is affected by the tax perturbation (Parts ii

and iii of Assumption 3). As the allocation is endogenous, imposing restrictions on it is ad-hoc.

This is the internal inconsistency of the tax perturbation approach. Conversely, the allocation

perturbation requires an assumption on preferences (Assumption 1) and restrictions on the per-

turbed allocation (Assumption 2). It therefore does not suffer the internal inconsistency of the

tax perturbation approach. Indeed, the tax perturbation hinges on Assumption 3. As explained

in Subsection IV.1, this assumption prevents jumps in the labor supply when a small tax reform

occurs, and ensures that the individual first-order condition corresponds to the unique global

maximum. Assumption 1 in Hendren (2014), local Lipschitz continuity of the income function

in Golosov et al. (2014) and the assumption that incomes are differentiable with respect to tax

reforms in Gerritsen (2016) play a similar role in their analysis. By contrast, our allocation per-

turbation approach relies on Assumption 2, which is less disputable because it restricts only

the set of allocations to be perturbed. Note also that the latter assumption is standard when

solving one-dimensional models (see Footnote 23). In addition, all our numerical simulations

show that the no-bunching constraint imposed by Assumption 2 never binds. In other words,

optimal income levels are always increasing in skills even when Assumption 2 is not imposed.

By adding Assumption 1 (within-group single-crossing), important connections between

Assumptions 2 and 3 appear. On the one hand, it is possible to retrieve Assumption 2 from

Assumptions 1 and 3, but this requires additional assumptions. Indeed, under Assumptions

1 and 3, Equation (30b) implies that in each group θ, Y(·, θ) is differentiable with a positive

derivative. From there, we can retrieve Assumption 2, if we, in addition, assume that, within

each group, Y(0, θ) = 0 and lim
w 7→∞

Y(w, θ) = ∞. On the other hand, Appendix A.7 shows the

following lemma.

Lemma 5. Assumptions 1 and 2 imply Assumption 3.

Lemma 5 states that Assumptions 1 and 2 automatically guarantee Assumption 3. In Propo-
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sition 4, the tax schedule based on sufficient statistics has been derived under Assumption 1

and the fairly restrictive Assumption 3. Lemma 5 makes clear that Assumptions 1 and 2, used

in our allocation perturbation method can also validate the tax perturbation approach. The allo-

cation perturbation and the tax perturbation approaches clearly appear as the two faces of the

same coin, each of them having advantages and drawbacks. In a nutshell, the tax perturbation

method is more intuitive while our allocation perturbation approach is more rigorous and is

internally consistent. It also clearly identifies the correct averaging procedures, the corrective

term required to obtain the proper sufficient statistics and it guarantees the validity of the tax

perturbation approach.

IV.3 Optimal tax rates on top incomes

To study the implications of multidimensional heterogeneity for the optimal asymptotic

marginal tax rates, we follow the usual assumptions that lead to the asymptotic tax formula

of Saez (2001) and Piketty and Saez (2013). We consider isoelastic individual preferences (see

Equation (4))31 and assume away income effects so that

U (c, y; w, θ) = c− θ

1 + θ

( y
w

) 1+θ
θ

. (36)

We assume that the mean marginal social welfare weight is asymptotically nil (i.e. lim
y 7→∞

ĝ(y) =

0). Taking optimal tax formula (33a) (which has been derived following both the allocation and

the tax perturbation approaches) to its limit for high income levels, we obtain a tax formula

equivalent to that of Piketty and Saez (2013):32

τ∗ =
1

1 + ε̂∗ p∗
where p∗ = lim

y 7→∞

1− Ĥ∗(y)
y · ĥ∗(y)

(37)

where τ∗ stands for the optimal asymptotic marginal tax rate and ε̂∗ is the mean asymptotic

compensated elasticity in the optimal economy. From now on, the variables at the optimum

are marked with a subscript asterisk and we use the subscript zero to indicate that a variable is

considered in the actual economy.

We now highlight the biases that occur in the asymptotic marginal tax rate when one does

not take into account composition effects in the sufficient statistics ε̂∗. In what follows, we

adopt the usual assumption that in the actual economy, the upper part of the income density

within group θ is described by a Pareto density of the form:

h0(y|θ) = kθ · y−(1+pθ) (38)

where kθ is the scale parameter and where the top income distribution term pθ is the Pareto

parameter, with pθ > 1. Both parameters can vary across groups. We first show that neglecting

31Note that the labor supply elasticity θ is a direct elasticity.
32A key difference is that Piketty and Saez (2013) aggregate all sufficient statistics across the top bracket earners

assuming the top tax rate is constant for these individuals, whereas, in order to obtain the asymptotic tax rate, we
average sufficient statistics at the highest income level following the correct procedure detailed in Proposition 4.
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the heterogeneity of pθ leads to major biases in the calculation of the asymptotic marginal tax

rate, because such a neglect prevents one to correctly identify the composition of the population

at the very top of the income distribution. We then show that even if pθ does not vary across

groups, following an incorrect averaging procedure (i.e. neglecting composition effects) to

calculate the sufficient statistic ε̂∗ also biases the asymptotic tax rate.

Identifying the composition of the population at the top of the income distribution

When the Pareto parameter pθ varies across groups, very top income earners come only

from a single θ group: the group whose Pareto distribution has the fatter tail, i.e. with the

lowest pθ . Therefore, from Equation (34a), the mean compensated elasticity ε̂∗ is simply equal

to the single θ. The latter can be dramatically different from the one estimated from the average

response among, say, the top 1%, which is what Piketty and Saez (2013) suggest to do.

As an illustration, consider an economy composed of two groups of equal size in the top 1%

of the population with θ1 = 0.2 and θ2 = 0.8. If the high-elasticity group has a Pareto parameter

p2 slightly above 1.5, while the low-elasticity group has a Pareto parameter p1 slightly below

1.5, then, from (37), the optimal asymptotic marginal tax rate is 1/(1 + 1.5 × 0.8) = 45.5%.

Conversely, if p1 is slightly above 1.5 and p2 slightly below, the optimal asymptotic marginal

tax rate is 1/(1 + 1.5× 0.2) = 76.9%. Now, if one fails to identify that there are two distinct

groups, one will mistakenly consider a single p parameter and mistakenly estimate θ as the

mean of θ1 and θ2 to implement the optimal asymptotic tax rate. In our example, this yields

θ = (θ1 + θ2)/2 = 0.4, which leads to an optimal marginal tax rate of 1/(1+ 1.5× 0.4) = 62.5%

with p = 1.5.

Given the lack of empirical evidence concerning difference in Pareto parameters across

groups with different labor supply elasticities, one can be skeptical of asymptotic marginal

tax rates calibrations based on the mean across the top percentile of the income distribution,

see e.g. Saez et al. (2012) and Piketty and Saez (2013).33 Our theoretical analysis thus calls for a

change of focus in the empirical analysis: Since individuals are heterogeneous along multiple

dimensions, one needs to estimate the elasticity of the group whose distribution has the fatter

Pareto tail.

Sufficient statistics with and without composition effects

We now show that, even if the Pareto parameter pθ did not vary across groups, it would be

crucial to correctly compute the sufficient statistics ε̂∗, taking composition effects into account.

Assume pθ = p for all groups. The mean compensated elasticity ε̂∗(y) is obtained, following

Equation (34a), from the asymptotic Pareto income density in the optimal economy, which itself

33Saez Slemrod and Giertz (2012) and Piketty and Saez (2013) derive an optimal tax formula for all income above a
threshold as a function of the mean taxable income elasticity above this threshold and of the Pareto coefficient. Their
implicit assumption is that the elasticity of taxable income and the local Pareto coefficient are roughly constant, so
their formula is robust to change in the threshold. Our argument is that such implicit assumptions can lead to
misleading policy prescriptions, in particular if the Pareto coefficients are different between high-elasticity and
low-elasticity groups.
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derives from the following transformation of the density in the actual economy:

h∗(y|θ) = kθ ·
(

1− τ∗
1− τ0

)θp

· y−(1+p) =

(
1− τ∗
1− τ0

)θp

· h0(y|θ). (39)

Proof First-order condition (6) and Equation (36) imply that individuals of type (w, θ) who face
the asymptotic marginal tax rate τ earn income:

y(w, θ) = (1− τ)θw1+θ (40)

in the optimal economy. Inverting (40) , we can write the skill level of individuals belonging to
group θ and earning income y in the optimal economy as:

w = y
1

1+θ (1− τ∗)
− θ

1+θ . (41)

The latest two equations allow us to write the income earned in the actual economy by an
individual who earns y in the optimal economy as:

Ỹ0(y, θ) =

(
1− τ0

1− τ∗

)θ

· y (42)

From the latter, we can write
H∗(y|θ) = H0(Ỹ0(y, θ)|θ) (43)

Differentiating both sides of (43) in y and using (38) and (42), we obtain (39). �

Equation (39) highlights the difference in the conditional income densities driven by com-

position effects. This difference is larger when the labor supply elasticity θ is larger and results

in distinct optimal and actual asymptotic mean compensated elasticities. According to (34a)

and (39), the optimal asymptotic compensated elasticity is given by:

ε̂(y) =
∫

θ∈Θ
θ ·

kθ ·
(

1− τ∗

1− τ0

)θp

∫
θ̃∈Θ kθ̃ ·

(
1− τ∗

1− τ0

)θ̃p

· dµ(θ̃)

· dµ(θ). (44)

To illustrate this second source of bias in the implementation of the asymptotic tax rate,

consider again two groups of equal size, kθ1 µ(θ1) = kθ2 µ(θ2). We set θ1 = 0.2 for the low-

elasticity group, θ2 = 0.8 for the high-elasticity group and p = 1.5. If the actual asymptotic

marginal tax rate is τ0 = 35%, then numerically solving Equations (37) and (44) yields, in the

optimal economy, an asymptotic compensated elasticity ε̂∗ = 0.434 and an optimal asymptotic

marginal tax rate equal to τ∗ = 60.6%.

Then, neglecting multidimensional heterogeneity leads to (44) being reduced to ε̂(y) = θ.

When neglecting multidimensional heterogeneity, one does not estimate two distinct values

θ1 = 0.2 and θ2 = 0.8 but simply an average value of θ = (θ1 + θ2)/2 = 0.5 so that ε̂(y) = 0.5.

From (37), we obtain an optimal asymptotic marginal tax rate equal to 1/(1 + 1.5 × 0.5) =

57.1%. These values are to be compared to the 0.434 and 60.6% found above, respectively.

These differences appear because, in neglecting multidimensional heterogeneity, one relies on
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incorrect income densities (h(y|θ1) = h(y|θ2) in the actual economy) rather than on the correct

income densities derived in the optimal economy. Indeed, the latter densities incorporate the

fact that the change in tax rates from the actual to the optimal economy modifies the income

distribution and therefore the share of taxpayers endowed with a high elasticity.

V Numerical Illustration

In this section, we start by numerically implementing the optimal tax formula of Proposi-

tion 1, so as to quantify the crucial role played by multidimensional heterogeneity. In Subsec-

tion V.1, we document the possibly important quantitative impact on the optimal marginal tax

rates of erroneously assuming identical behavioral elasticities across individuals who pool at

the same income level. We then highlight the consequences for the tax formula of three usual

miscalculations of the sufficient statistics. The first (Subsection V.2) consists in using the direct

rather than the total responses when implementing the tax formula. The second and third (Sub-

section V.3) respectively consists in (i) directly plugging data from the actual economy in the

density of income rather than determining its value in the optimal economy and (ii) neglecting

the composition effects. While the first error has only a moderate impact on the optimal tax

rates, the latter two may lead to serious biases.

V.1 One-dimensional versus multidimensional heterogeneity

We calibrate the model assuming an individual utility without income effects u(c) = c (as in

e.g., Atkinson (1990) and Diamond (1998)) and a disutility of income v(y, w; θ) = θ
1+θ (y/w)1+ 1

θ

where θ is the direct (taxable income) elasticity. We assume Bergson-Samuelson social prefer-

ences with Φ(.; w, θ) = log(.). For our illustrative purposes, it is not necessary to go beyond

two dimensions of individual heterogeneity. The two dimensions we choose are the direct

elasticity θ and the earning ability (or skill) w.

We calibrate the model from a subsample of the March 2013 CPS that consists in single

men or women without children. We consider two scenarii. In the first one, which we call the

multidimensional scenario, there are two θ groups: wage earners on the one hand and self-

employed on the other. Again, for illustrative purposes, it is not necessary to go beyond two θ

groups. We assume these two groups have different taxable income elasticities because wage

earners have much fewer possibilities to adjust their labor supply or to evade their income than

the self-employed (see e.g., Sillamaa and Veall (2001), Saez (2010), Kleven et al. (2011)). We take

realistic direct taxable income elasticities of θ = 0.8 for the self-employed and θ = 0.2 for salary

workers. We then recover the skill distribution in each group from individuals’ first-order

condition (6) applied to the self-employed and salary workers’ respective income data.34

34To approximate an unbounded skill distribution, we run simulations over the income range [$0; $1, 000, 000],
exogenously adding a mass point at the highest income level to ensure that every conditional income density mimics
a Pareto unbounded distribution for high income levels. Note that we show results only for income below $250, 000.

32



The second scenario, that we call the Mirrlees scenario, corresponds to the usual one-

dimensional case where individuals differ only in skills. All individuals have the same direct

elasticity θ which is computed as the sample mean, θ = 0.248, of the direct elasticities used in

the first scenario.

5
10

15
20

25
30

 

40
45

50
55

60
65

70

0 50,000 100,000 150,000 200,000 250,000
Pre-tax Income $

Multidimensional scenario

Mirrlees scenario

Share of self-employed - Right-hand side axis

Figure 5: Optimal marginal tax rates

To obtain the optimal tax profiles, we implement our structural tax formula (Equation

(20a)), using an algorithm which is detailed in Appendix B. The optimal marginal tax rates

in the two scenarii are shown on Figure 5 with the percentage of the marginal tax rate on the

left-hand side vertical axis. We observe significant differences between the shape of the tax

profiles obtained in the Mirrlees scenario (dashed line) and the shape of those obtained in the

multidimensional scenario (solid line). This is due to variations in the share of self-employed

along the income distribution represented on the right-hand side vertical axis (dotted line).

This share affects the mean compensated elasticity ε̂(y) in the scenario with heterogeneous

elasticity. From the first term in the right-hand side of (33a), we know that a larger mean elas-

ticity reduces the marginal tax rate, ceteris paribus. In the lower part of the income distribution,

the share of self-employed is relatively large. This drives up the mean elasticities at these in-

come levels hence, it slightly reduces the optimal marginal tax rates. Similarly, in the upper

part of the income distribution, the share of self-employed is sharply increasing with income.

Therefore, the marginal tax rates are drastically reduced. The reduction of marginal tax rate

reaches up to 11 percentage points around $250, 000 when heterogeneous elasticities are taken

into account.

V.2 Total versus direct sufficient statistics

Proposition 4 and Equations (31a)-(31c) makes it clear that the tax formula in terms of suf-

ficient statistics has to be implemented with total and not direct responses. However, it is the

direct elasticities that are estimated in practice, essentially because actual tax schedules are
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piecewise-linear. One may then be tempted35 to implement the tax formula mistakenly using

the direct instead of total elasticities. We now quantify the bias that such an approximation

induces in the implementation of the optimal tax formula. Figure 6 contrasts, in the multidi-

mensional scenario, the tax schedules obtained with the mean total compensated elasticity and

the one obtained with the mean direct compensated elasticity (the differences in the elasticities

themselves are presented in Figure 10 in Appendix B.1). Note that the mean total compensated

elasticity is retrieved from Equation (34a) whereas the mean direct compensated elasticity is

obtained by replacing ε(y, θ) with ε?(y, θ) in Equation (34a).36 The differences in marginal tax

rates induced by using direct rather than total compensated elasticities are relatively small. Mis-

takenly using the direct rather than the total elasticity leads to a difference of optimal marginal

tax rates below 2 percentage points. The largest difference occurs around $50, 000 where opti-

mal marginal tax rates are decreasing at the highest pace. In Figure 6, we also add the optimal

marginal tax rates obtained, in the Mirrlees scenario, with direct and total compensated elastic-

ities. Again, the resulting differences in marginal tax rates are rather small. This would suggest

that approximating total elasticities by direct ones might be an acceptable approximation for

a numerical exercise which is reassuring for the literature at large. Finally, Figure 6 highlights

that neglecting multidimensional heterogeneity and using direct compensated elasticity yields

marginal tax rates that are very different from the ones generated in the multidimensional sce-

nario. This is particularly striking above $120, 000 where the share of self-employed becomes

larger than the mean of self-employed across the entire population sample.
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Figure 6: Optimal marginal tax rates with direct vs total elasticities

35Note that Saez (2001) uses, in order to implement the tax schedule, a structural tax formula and not a formula
in terms of sufficient statistics. Piketty and Saez (2013, page 466) make a similar recommendation.

36To compute the mean total elasticity, we use the optimal marginal tax rate obtained from the implementation
of the structural tax formula (Equation (20a)). The latter also allows us to calculate the optimal values of ĥ(·), Ĥ(·),
ĝ(y). We then plug these optimal values into the sufficient statistics tax formula (Equation (33a)) to recover the
mean total compensated elasticity ε̂(y).

34



V.3 Endogeneity bias and composition effects in sufficient statistics

Even though using direct rather than total elasticities only leads to small differences, one

should use the structural tax formula and not the one based on sufficient statistics to compute

optimal marginal tax rates. This is because all sufficient statistics should be computed in the

optimal economy (which requires the structural tax formula) and not in the actual one. Figure 7

illustrates, in the Mirrlees and the multidimensional scenarii, the drastic differences in marginal

tax schedules that result from evaluating the sufficient statistics at the optimum rather than in

the actual economy. One of the sufficient statistics in Tax Formula (33a) is the mean marginal

social welfare weight ĝ(y) which is typically not evaluated in empirical applications. To avoid

giving it an undeserved importance in the determination of optimal tax rates and to emphasize

the importance of the other sufficient statistics, in what follows we systematically set ĝ(y) at

the optimal values found in the multidimensional scenario.37 Therefore, the marginal tax rates

vary only with the mean total compensated elasticity and with the income densities.
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Figure 7: Marginal tax rates, in the multidimensional scenario, with sufficient statistics in the
actual and optimal economies

In Figure 7, the blue and red curves are the same as in Figure 6. The black dotted curve de-

picts the marginal tax rates obtained when direct compensated elasticities are calibrated with

h(y|θ) in the actual economy and when the density ĥ(y) is evaluated at the optimum. Com-

paring this curve with the red one emphasizes the magnitude of the composition effects which

imply distinct values for the mean compensated elasticity in the actual and optimal economies.

The composition effect stems, at every income level, from the prevalence of the distinct shares

of self-employed individuals in the actual and optimal economies. As can be seen, the compo-

sition effect implies differences in marginal tax rates up to 3 percentage points for lowest and

highest incomes on Figure 7. This difference a priori seems to be of a small magnitude, but it

37For each curve of Figure 10, the welfare weights are normalized so that the sum of their product with the income
density is equal to one.
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actually takes other proportions when the marginal tax rates are obtained with both h(y|θ) and

the density ĥ(y) evaluated in the actual economy. Doing so leads to the purple curve in Figure

7. The differences between the purple and red curves in this figure highlights the bias induced

by mistakenly neglecting the modification of the income distribution term (1− Ĥ(y))/(yĥ(y))

between the actual and optimal economies when calibrating the tax formula. As it can be seen,

the error in terms of recommended marginal tax rates is then quite substantial, reaching up to

10 percentage points. When calibrating the tax formula with actual sufficient statistics rather

than the optimal ones, marginal tax rates on incomes below (above) $155, 000 are drastically

downward (upward) biased. Unfortunately, this improper implementation implies major mis-

takes in terms of tax policy recommendations.

In the standard Mirrlees’ model, calibrating the model with actual direct compensated elas-

ticities and income densities rather than the total compensated elasticities and optimal income

densities already leads to a serious bias, as illustrated in Figure 8. In this figure, the difference

between the blue and red curves shows the impact of neglecting the corrective term (31d). More

remarkably, the difference between the red and black curves shows the dramatic downward

bias in marginal tax rates when mistakenly using the initial income density rather than the op-

timal one. Differing from the multidimensional scenario, this mistake implies that marginal tax

rates are downward biased at all income levels. In contrast, marginal tax rates are downward

(upward) biased at low (high) income levels when one takes into account multidimensional

heterogeneity (i.e., in our example, distinct elasticities for self-employed and wage earners). In

other words, taking multidimensional heterogeneity into account aggravates the bias already

observed in the unidimensional case, because the direction of the bias changes according to the

income level. In addition, the magnitude of the bias is overall more important.
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W/ direct compensated elasticity
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Figure 8: Marginal tax rates in the Mirrlees scenario with sufficient statistics in the actual and
optimal economies
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VI Concluding Comments

In this paper, we have proposed a new structural method, based on an allocation perturba-

tion, to derive optimal tax schedules and their optimal sufficient statistics, in the very general

case where agents are heterogeneous in many dimensions. After contrasting this method with

the usual tax perturbation approach, we have quantified the bias in marginal tax rates entailed

by using observed sufficient statistics rather than the optimal ones. Using US data, we have

shown that, even in a simple illustration, this bias can reach up to 10 percentage points. Our

structural tax formula allows us to avoid such a bias and is necessary to correct the observed

sufficient statistics.

To illustrate the generality of our framework, we have provided four possible interpreta-

tions of our tax formulae: income taxation with heterogeneous skills and heterogeneous labor

supply elasticities, joint taxation of labor and non-labor income, joint income taxation of cou-

ples and income taxation with tax avoidance. More generally, our approach applies to any

taxation problem in which the tax function depends on as many different sources of income

as one wishes. It even extends beyond optimal taxation, e.g., to nonlinear pricing problems

where consumers differ along several unobserved dimensions. We intend to implement these

applications on real data in our future research.

A Theoretical Proofs

A.1 Proof of Lemma 1

y

c

yL = Y(wL, θ)

cL = C(wL, θ)

U (c, y; wL, θ) ≥ U (cL, yL; wL, θ)

U (cL, yL; wH , θ) ≥ U (c, y; wH , θ)

Figure 9: Proof of Lemma 1

Figure 9 displays the indifference curves of individuals belonging to the same group θ but
endowed with two distinct skill levels wL < wH. These indifference curves intersect at the
bundle (C(wL, θ), Y(wL, θ)) that the government designs for individuals of type (wL, θ). The
within-group single-crossing assumption implies that the indifference curve of the low-skilled
workers is steeper than the one of the high-skilled worker. To respect the within group in-
centive constraints (13), the government needs to assign a bundle (C(wH, θ), Y(wH, θ)) to the
high-skilled workers that is above the indifference curve of the high-skilled workers (other-
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wise, the individuals of type (wH, θ) would prefer the bundle (C(wL, θ), Y(wL, θ)) to the bun-
dle (C(wH, θ), Y(wH, θ)) designed for them) and below the indifference curve of the low-skilled
workers (otherwise, individuals of type (wL, θ) would prefer the bundle (C(wH, θ), Y(wL, θ))
to the bundle (C(wH, θ), Y(wH, θ)) designed for them). Consequently, the bundle (C(wH, θ),
Y(wH, θ)) designed for the high-skilled workers should be located in the non-shaded area
in Figure 9, which implies that Y(wL, θ) ≤ Y(wH, θ), C(wL, θ) ≤ C(wH, θ) and Y(wL, θ) =
Y(wH, θ) if and only if C(wL, θ) = C(wH, θ).

A.2 Proof of Lemma 2

The steps we follow are standard, see e.g., Salanié (2005). From the taxation principle, indi-
viduals choose the type w′, θ′ that they want to mimic, i.e. they solve max

w′,θ′
U (C(w′, θ′), Y(w′, θ′); w, θ).

Function (w′, θ′) 7→ U (C(w′, θ′), Y(w′, θ′); w, θ) admits a partial derivative with respect to w′

that is equal to:

Ċ(w′, θ′) Uc
(
C(w′, θ′), Y(w′, θ′); w, θ

)
+ Ẏ(w′, θ′) Uy

(
C(w′, θ′), Y(w′, θ′); w, θ

)
.

The first-order condition implies that this expression must be nil at (w′, θ′) = (w, θ). Using (2)
leads to (14b). Differentiating in w both sides of U(w, θ) = U (C(w, θ), Y(w, θ); w, θ) leads to:

U̇(w, θ) = Ċ(w, θ) Uc (C(w, θ), Y(w, θ); w, θ) + Ẏ(w, θ) Uy (C(w, θ), Y(w, θ); w, θ)

+ Uw (C(w, θ), Y(w, θ); w, θ)

=

(
Ċ(w, θ)

Ẏ(w, θ)
−M (C(w, θ), Y(w, θ); w, θ)

)
Uc (C(w, θ), Y(w, θ); w, θ) Ẏ(w, θ)

+ Uw (C(w, θ), Y(w, θ); w, θ)

where the second equality follows (2). Using Uw = −vw, (14a) holds if and only if (14b) holds.

A.3 Proof of Lemma 4

The proof consists of two steps, to show (i) that there exists at most one incentive-compatible
allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies Assumption 2 and such that (C(w, θ0), Y(w, θ0)) =
(C(w, θ0), Y(w, θ0)), (ii) that this allocation verifies the whole set of incentive constraints (12).

Step (i). To build up the entire incentive-compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)),
we must choose (C(w, θ0), Y(w, θ0)) = (C(w, θ0), Y(w, θ0)) at any skill level. For each group θ,
Y(·, θ) verifies Assumption 2 if and only if its reciprocal Y−1(·; θ) is smoothly increasing. Let
y ∈ R+ be an income level. As Y(·, θ0) is smoothly increasing from Assumption 2, there exists
a unique skill level w such that y = Y(w, θ0). Then according to Lemma 3, among individuals
of group θ, only those of skill W(w, θ) must be assigned to the income level y = Y(w, θ0) to
verify incentive-compatibility.38 Therefore, Y−1(·, θ) must be defined by:

Y−1(·, θ) : y
Y−1(·,θ0)7−→ w = Y−1(y, θ0)

W(·,θ)7−→ Y−1(y, θ).

Y−1(·, θ) is then smoothly increasing as a combination of two smoothly increasing functions.
We now show that C(w, θ) is also uniquely determined for any skill level ω and group θ. This
is because we know from above that for each type (ω, θ), there exists a single skill level ω such
that Y(ω, θ) = Y(w, θ0). Incentive compatibility then requires that C(ω, θ) also needs to be
equal to C(w, θ0). This ends the proof of step (i).

Step (ii). We now show that the aforementioned incentive-compatible allocation satisfies
the within-group incentive constraints. Note that the allocation (w, θ) 7→ (Y(w, θ), C(w, θ))

38Hence function W(·, θ) coincides with the pooling function W(·, θ).
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is built in such a way that one has Y(ω, θ) = Y(w, θ0) and C(ω, θ) = C(w, θ0) if and only if
ω = W(w, θ) and (16) holds. Differentiating in w both sides of these two equations, we obtain
Ẏ(W(w, θ), θ) Ẇ(w, θ) = Ẏ(w, θ0) and Ċ(W(w, θ), θ) Ẇ(w, θ) = Ċ(w, θ0). Rearranging terms
leads to:

Ċ (w, θ0)

Ẏ (w, θ0)
=

Ċ (W(w, θ), θ0)

Ẏ (W(w, θ), θ0)
.

As w 7→ (C(w, θ0), Y(w, θ0)) is assumed to verify the within-group incentive-compatible con-
straints in Equation (14b), we know that the left-hand side of the above equation is equal to
M (C(w, θ0), Y(w, θ0); w, θ0). Using the definition of W(·, θ), we have that w 7→ (C(w, θ), Y(w, θ))
also verifies Equation (14b). From Lemma 2, it thus verifies the within-group incentive con-
straints of (13). We now verify whether the inequality (12) is verified for any (w, w′, θ, θ′) ∈
R2

+ ×Θ2. We know there exists ω ∈ R+ such that Y(ω, θ) = Y(w′, θ′) and C(ω, θ) = C(w′, θ′).
The incentive constraints in (12) are therefore equivalent to:

U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(ω, θ), Y(ω, θ); w, θ) .

The latter inequality is verified as w 7→ (C(w, θ), Y(w, θ)) also satisfies Equation (14b). There-
fore, from Lemma 2, it satisfies the entire set of incentive constraints (13).

A.4 Derivation of Equation (23)

To derive Equation (23), we must compute the various Gâteaux derivatives at t = 0. For
A = C, Y, U and a given δ, the Gâteaux derivative of A in the direction ∆Y(·, ·; δ) at t = 0 is
defined by:

lim
t 7→0

Â(x, θ; t, δ)− A(w, θ)

t
.

To facilitate reading, we denote it ˆ̂A(x, θ; δ) in this appendix. We derive ˆ̂Y(x, θ0; δ) = ∆Y(x; δ),
and from (21b) we obtain:

ˆ̂Y(x, θ; δ) = 0 if x ∈ [0, W(w− δ, θ)] ∪ [W(w, θ),+∞) . (45a)

Equations (21c) imply that the Gâteaux derivatives of utilities are nil for skill below W(w− δ, θ).
For skills x between W(w− δ, θ) and W(w, θ), Equation (21e) implies:

ˆ̂U(x, θ; δ) = −
∫ x

W(w−δ,θ)
υyw (Y(ω, θ0); ω, θ0)

ˆ̂Y(ω, θ0; δ) dω. (45b)

For skill above W(w, θ), according to (21f), we have:

ˆ̂U(x, θ; δ) = −
∫ W(w,θ)

W(w−δ,θ)
υyw (Y(ω, θ0); ω, θ0)

ˆ̂Y(ω, θ0; δ) dω. (45c)

Moreover, Equation (21h) implies that the Gâteaux derivatives of income must verify:∫ w

w−δ
υyw (Y(ω, θ0); ω, θ) ˆ̂Y(ω, θ0; δ) dω =

∫ W(w,θ)

W(w−δ,θ)
υyw (Y(ω, θ); ω, θ) ˆ̂Y(ω, θ; δ) dω. (45d)

Using Equations (18), (45a) and (45c), the Gâteaux derivative of the Lagrangian (22) is:

∂L̂

∂t
(0; δ) =

∫
θ∈Θ

{∫ W(w,θ)

W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx (46)

+
∫ W(w,θ)

W(w−δ,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
ˆ̂U(x, θ; δ) f (x|θ)dx

−
(∫ W(w,θ)

W(w−δ,θ)
υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

)
×

(∫ ∞

W(w,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
f (x|θ)dx

)}
dµ(θ).
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Dividing the first-order condition ∂L̂
∂t (0; δ) = 0 by

∫ w
w−δ υyw (Y(x, θ0); x, θ0)

ˆ̂Y(x, θ0; δ) dx im-
plies, using (45b) and (45d), that

∫
θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ) = (47)

∫
θ∈Θ


∫ W(w,θ)

W(w−δ,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

) ∫ x
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

f (x|θ)dx +

∫ ∞

W(w,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
f (x|θ)dx

 dµ(θ).

We finally take the limit of the latter equality when δ tends to 0. Let us consider the first term
in the right-hand side of (47). Since∫ x

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

∈ [0, 1]

we get that:∣∣∣∣∣∣
∫

θ∈Θ

∫ W(w,θ)

W(w−δ,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

) ∫ x
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx∫ W(w,θ)
W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx

f (x|θ)dxdµ(θ)

∣∣∣∣∣∣
≤
∣∣∣∣∫

θ∈Θ

∫ W(w,θ)

W(w−δ,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
f (x|θ)dxdµ(θ)

∣∣∣∣ .

As the right hand-side of the latter inequality tends to 0 when δ tends to 0, the limit of (47)
when t tends to zero leads to:

lim
δ 7→0

∫
θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ) (48)

=
∫∫

θ∈Θ,x≥W(w,θ)

(
ΦU < w, θ >

λ
− 1

u′ < x, θ >

)
f (x|θ)dx dµ(θ).

By continuity, the variations of f (x|θ), υy(Y(x, θ); x, θ), υyw(Y(x, θ); x, θ) and u′(c(x, θ)) within
the skill intervals [W(w − δ, θ), W(w, θ)] are of second-order when δ tends to 0. As Θ and
intervals [W(w− δ, θ), W(w, θ)] are compact, for any small e > 0, there always exists δ̃(e) such
that for all (x, θ) ∈ [W(w− δ̃(e), θ), W(w, θ)]×Θ, one has:(

1− υy〈W(w, θ), θ〉
u′(C(W(w, θ), θ)

f (W(w, θ)|θ)− e
)

ˆ̂Y(x, θ; δ) ≤
(

1− υy〈W(x, θ), θ〉
u′(C(W(x, θ), θ)

f (x|θ)
)

ˆ̂Y(x, θ; δ)

≤
(

1− υy〈W(w, θ), θ〉
u′(C(W(w, θ), θ)

f (W(w, θ)|θ) + e
)

ˆ̂Y(x, θ; δ)

and(
υyw〈W(w, θ), θ〉 − e

) ˆ̂Y(x, θ; δ) ≤ υyw〈W(x, θ), θ〉 ˆ̂Y(x, θ; δ) ≤
(
υyw〈W(w, θ), θ〉+ e

) ˆ̂Y(x, θ; δ) < 0
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so that for all δ < δ̃(e):

∫
θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ) + e

υyw(Y(W(w, θ), θ); W(w, θ), θ)− e

∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ)dx∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ)− e

υyw(Y(W(w, θ), θ); W(w, θ), θ) + e

∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ)dx∫ W(w,θ)
W(w−δ,θ)

ˆ̂Y(x, θ; δ) dx
dµ(θ)

and therefore, for all δ < δ̃(e):

∫
θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ) + e

υyw(Y(W(w, θ), θ); W(w, θ), θ)− e
dµ(θ)

≤
∫

θ∈Θ

∫ W(w,θ)
W(w−δ,θ)

(
1−

υy(Y(x, θ); x, θ)

u′(C(x, θ))

)
ˆ̂Y(x, θ; δ) f (x|θ)dx∫ W(w,θ)

W(w−δ,θ) υyw (Y(x, θ); x, θ) ˆ̂Y(x, θ; δ) dx
dµ(θ)

≤
∫

θ∈Θ

(
1−

υy(Y(W(w, θ), θ); W(w, θ), θ)

u′(C(W(w, θ), θ)

)
f (W(w, θ)|θ)− e

υyw(Y(W(w, θ), θ); W(w, θ), θ) + e
dµ(θ)

Hence, left-hand side of (48) is equal to the left-hand side of (23).

A.5 Equations (25a) and (25b)

With one-dimensional heterogeneity, we only consider within-group incentive constraints.
Adopting a first-order approach, only (14a) is considered when building up the Hamiltonian:(

Y(w, θ)− C (Y(w, θ), U(w, θ); w, θ) +
Φ (U(w, θ); w, θ)

λ

)
· f (w|θ)− q(w|θ) · vw (Y(w, θ); w, θ) .

where Y(w, θ) and U(w, θ) are the control and state variables respectively. Using (18), the
necessary conditions are:

0 =

(
1−

vy 〈w, θ〉
u′ 〈w, θ〉

)
· f (w|θ)− q(w|θ) · vyw 〈w, θ〉 (49a)

−q̇ (w|θ) =

(
ΦU 〈w, θ〉

λ
− 1

u′ 〈w, θ〉

)
· f (w|θ) (49b)

0 = q(0|θ) (49c)
0 = lim

w 7→∞
q(w|θ). (49d)

Combining (49b) with (49d) leads to

q(w|θ) =
∫ ∞

w

(
ΦU 〈w, θ〉

λ
− 1

u′ 〈w, θ〉

)
· f (ω|θ)dω. (49e)

Combining (2), (6), (49a) and (49e) leads to (25a). Combining (49c) with (49e) leads to (25b).
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A.6 Proof of Proposition 4

Dividing (30a) by (30b) we get:

ε(w, θ)

α(w, θ)
= −

v′y 〈w, θ〉
w · v′′yw 〈w, θ〉 . (50)

Plugging (30a) into (30c) leads to:

η(w, θ) = Y(w, θ) · u′′ 〈w, θ〉
u′ 〈w, θ〉 · ε(w, θ).

It is then straightforward to obtain:

η̂(Y(w, θ0)) = Y(w, θ0) ·
u′′ 〈w, θ0〉
u′ 〈w, θ0〉

· ε̂(Y(w, θ0)). (51)

Let y ∈ R+. From Assumption 2, there exists a single w such that y = Y(w, θ0). We know that

1− T′ 〈w, θ〉 =
v′y 〈w, θ〉
u′ 〈w, θ〉 (52)

from (6). The integrand in the left-hand side of (20a) can be rewritten as:

vy 〈W(w, θ), θ〉
−W(w, θ) vyw 〈W(w, θ), θ〉 W(w, θ) f (W(w, θ)|θ) =

ε (W(w, θ), θ)

α (W(w, θ), θ)
·W(w, θ) f (W(w, θ)|θ)

= ε (W(w, θ), θ) Y(w, θ0) h(Y(w, θ0)|θ).

from Equations (50) and (32), respectively. Combining with (34a), it leads to rewriting (20a) as:

T′ 〈w, θ0〉
1− T′ 〈w, θ0〉

· ε̂ (Y(w, θ0)) ·Y(w, θ0) · ĥ(Y(w, θ0)) = J(w) (53)

where J(w) is defined by the right-hand side of (20a). J(·) admits for derivative J̇(w) where:

J̇(w) = Ċ(w, θ0)
u′′ 〈w, θ0〉
u′ 〈w, θ0〉

J(w) +∫
θ∈Θ

{
ΦU 〈W(w, θ), θ〉 u′ 〈W(w, θ), θ〉

λ
− 1
}

Ẇ(w, θ) f (W(w, θ)|θ) dµ(θ)

=
∫

θ∈Θ
{g (W(w, θ), θ)− 1} · Ẇ(w, θ) · f (W(w, θ; θ0)|θ) · dµ(θ) + Ċ(w, θ0) ·

u′′ 〈w, θ0〉
u′ 〈w, θ0〉

· J(w)

where (10) has been used. Deriving with respect to the skill w both sides of (15) and of
C(w, θ0) = Y(w, θ0)− T (Y(w, θ0)), we get that:

Ẇ(w, θ) =
Ẏ (w, θ0)

Ẏ (W(w, θ), θ)
and Ċ(w, θ0) =

(
1− T′ (Y(w, θ0))

)
Ẏ(w, θ0).

We thus obtain:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} f (W(w, θ)|θ)
Ẏ(W(w, θ), θ)

dµ(θ) +
(
1− T′ 〈w, θ0〉

) u′′ 〈w, θ0〉
u′ 〈w, θ0〉

J(w)

 Ẏ(w, θ0).
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Using (32) and (53), J̇(w) can be rewritten as:

J̇(w) =

 ∫
θ∈Θ

{g (W(w, θ), θ)− 1} h (Y(w, θ0)|θ) dµ(θ)

+ T′ (Y(w, θ0))Y(w, θ0)
u′′ (C(w, θ0))

u′ (C(w, θ0))
ε̂(Y(w, θ0))ĥ(Y(w, θ0))

)
Ẏ(w, θ0)

= −
{

1− ĝ(Y(w, θ0))− η̂(Y(w, θ0)) · T′ (Y(w, θ0))
}
· ĥ (Y(w, θ)) · Ẏ(w, θ0)

using (51) and (34c). As J(w) =
∫

x≥w(− J̇(x))dx, we obtain:

J(w) =
∫

x≥w

{
1− ĝ(Y(x, θ0))− η̂(Y(x, θ0)) · T′ (Y(x, θ0))

}
· ĥ (Y(x, θ)) · Ẏ(x, θ0) · dx.

Changing variables by setting z = Y(x, θ0), we get:

J(w) =
∫

z≥Y(w,θ0)

{
1− ĝ(z)− η̂(z) · T′ (Y(z))

}
· ĥ (Y(x, θ)) · dz. (54)

Plugging (54) into (53) gives (33a). Combining (20b) and (54) leads to (33b).

A.7 Proof of Lemma 5

We first prove that the tax function is twice differentiable (i.e. part i) of Assumption 3). The
tax function can be retrieved from T(y) ≡ y − C

(
U
(
Y−1(y, θ0), θ0

)
, y; w, θ0

)
where U(·, θ0)

is differentiable in skill since, according to Assumption 2, the right-hand side of Equation
(14a) is continuous. Since Y−1(·, θ) is continuously differentiable in income from Assump-
tion 2, T(·) is continuously differentiable in income. According to (6), T′(y) ≡ 1 −M (y −
T(y), y; Y−1(y, θ)). Using again that Y−1(·, θ) is continuously differentiable in income (from
Assumption 2), M (y − T(y), y; Y−1(y, θ), θ) is also continuously differentiable in income so
that the marginal tax rate is continuously differentiable in income. We can conclude that the
tax function is twice continuously differentiable.

We now show that Yy(Y(w, θ), 0, 0; w, θ) < 0 (i.e. part ii) of Assumption 3).39 By definition
of Y(w, θ), the first-order condition Y (Y(w, θ), 0, 0; w, θ) = 0 must be verified at all skill levels
w, in all groups θ. Differentiating with respect to w yields Ẏ(w, θ) Yy(Y(w, θ), 0, 0; w, θ) =
−Yw(Y(w, θ), 0, 0; w, θ). From (28), Yw = −υyw, which is positive from Assumption 1. As
Ẏ(w, θ) > 0 from Assumption 2, we have Yy(Y(w, θ), 0, 0; w, θ) < 0.

Finally, we show that for each (w, θ) ∈ R+, y 7→ u(y − T(y))− υ(y; w, θ) admits a single
global maximum (i.e. part iii) of Assumption 3). Assume that there exists y′ 6= Y(w, θ) that
also maximizes y 7→ u(y− T(y))− υ(y; w, θ). According to Assumption 2, there exists w′ 6= w
such that y′ = Y(w′, θ). Moreover, the first-order condition Y (Y(w′, θ), 0, 0; w, θ) = 0 must
be verified for individuals of type (w, θ) at Y(w′, θ). As Y(w′, θ) must also solve the individ-
ual program for individuals of type (w′, θ), the first-order condition must also be verified at
Y(w′, θ) for individuals of type (w′, θ), so that Y (Y(w′, θ), 0, 0; w, θ) = Y (Y(w′, θ), 0, 0; w′, θ).
However, as Yw = −υw from Equation (28), Assumption 1 implies that Yw > 0. Therefore, the
equality Y (Y(w′, θ), 0, 0; w, θ) = Y (Y(w′, θ), 0, 0; w′, θ) can only happen if w = w′, a contra-
diction that ends the proof.

39We are grateful to Kevin Spiritus for encouraging us to emphasize this result.

43



B Numerical simulations

The calibration is based on the March 2013 supplement CPS distribution of adjusted gross
income among singles without dependent. We approximate an unbounded income distribution
by considering income until $1, 000, 000, but showing results only until $250, 000. Because of
top coding of income in the CPS, we extend it with an exogenous mass at income $1, 000, 000
to mimic a Pareto density with power −(1 + p) = −2.5.

We use an algorithm based on a discrete grid of the income distribution, whose 2, 001 el-
ements are denoted yi and are evenly distributed. The different steps of the kth loop are the
following, where integrals with respect to skill are approximated by right Riemann sums.

1. Given a tax function Tk(·), find from the individual’s first-order condition (6) for each
income level yi and each group θ the skill level wi(θ) such that:

1− T′k(yi) =
v′ (yi; wi(θ), θ)

u′(yi − Tk(yi))

2. For each group, use a kernel density estimation to approximate the conditional skill den-
sity f (·|θ) and extend this density by a mass at the highest income to approximate an
unbounded Pareto tail at the top. Normalize each conditional skill-density f (·|θ) to en-
sure a total mass of µ(θ) over all income levels yi.

3. Use (20b) to compute the Lagrange multipliers λ.

4. Use (20a) to update marginal tax rate to T′k+1(yi) through:

T′k+1(yi)

1− T′k+1(yi)
·
∫

θ∈Θ

{
−

v′y (yi; wi(θ), θ)

wi(θ) v′′yw (yi; wi(θ), θ)
wi(θ) f (wi(θ)|θ)

}
dµ(θ) = u′(yi − Tk(yi)) ·∫

θ∈Θ

{∫
ω≥wi(θ)

(
1

u′ (yi − Tk(yi))
− Φ′u(u(yi − Tk(yi))− v(yi; wi(θ), θ))

λ

)
f (ω|θ)dω

}
dµ(θ)

5. Update Tax liability Tk+1(yi) to satisfy the budget constraint (7).

6. Go back to Step 1 until maxi
{∣∣T′k(yi)− T′k+1(yi)

∣∣} < 0.1%.

B.1 Direct vs total compensated elasticities

Figure 10 displays the mean total and direct compensated elasticities, in the multidimen-
sional scenario. The mean total compensated elasticity is higher than the mean direct one
around $50, 000. With the former elasticity, we obtain lower marginal tax rates around $50, 000
as expected theoretically and as can be seen in Figure 6.
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Figure 10: Direct and total elasticities in the multidimensional scenario
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