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Abstract

This paper develops a general method to solve the optimal nonlinear income tax model
with one action (individual pre-tax income) and multidimensional characteristics. Indi-
viduals differ in terms of skills and belong to different groups. A group is a subset of
individuals with the same vector of characteristics but distinct skill levels. Assuming the
Spence-Mirrlees single-crossing condition (with respect to the level of skill) in each group,
we first derive the optimal second-best allocation. We then show how this optimality con-
dition leads to a tax formula in terms of behavioral responses, social welfare weights and
income density in the vein of Saez (2001). However, our multidimensional context implies
that all these terms are averaged across individuals who earn the same income. We also
show how our method can be used to solve a large set of policy relevant problems for which
it is crucial to introduce multidimensional heterogeneity, e.g., joint taxation of households,
nonlinear pricing of a monopoly.
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I Introduction

The model of Mirrlees (1971), in which individual heterogeneity is uni-dimensional and in-

dividual choices are made along the intensive margin, has set a benchmark in several economic

disciplines. Its applications range from public economics (to derive the income tax schedule on

labor income) to industrial organization (to derive the nonlinear price schedule of a monop-

olistic firm). For technical reasons only, the Mirrlees model assumes the unobserved hetero-

geneity to be one-dimensional and imposes the Spence-Mirrlees single crossing condition. The

assumption of heterogeneity along a single dimension is very restrictive. Realism calls for mul-

tidimensional heterogeneity. Workers differ along their skill levels but also along their labor

supply elasticities for instance, and a consumer may have several uses for the same product,

and her value of the product in each use may differ. However, it is well-known that multi-

dimensional screening problems are typically challenging (Rochet and Choné, 1998).

We provide a method to solve a large class of optimal nonlinear income tax models when

individuals differ along several dimensions and the observable action (the individual’s amount

of pre-tax income) is uni-dimensional. Individuals may both differ in terms of skills (that are

continuously distributed) and belong to different groups. A group is a subset of individuals

with distinct skill levels and with the same vector of other characteristics, e.g. gender, age,

labor supply elasticity, level of non-labor income, etc. For instance, young, white women can

be a single group with different skills. The set of groups may be finite or infinite and may be

multidimensional. We show that keeping the assumption of single-crossing (with respect to

skill) among individuals belonging to the same group makes the model tractable. We show

that individuals of different groups pooled at the same income level are characterized by the

same marginal rate of substitution between pre-tax and after-tax income. Intuitively, individu-

als of distinct groups who earn the same income level face the same marginal tax rate. From the

individual maximization program, we know that identical marginal tax rates imply identical

marginal rates of substitution. Using this equality in marginal rates of substitution together

with the single-crossing condition within each group, we can fully characterize an incentive-

compatible allocation from its restriction to a reference group Computing the first-order effects

of a perturbation in this allocation yields a necessary condition for the second-best allocation

(Proposition 1). The latter generalizes to multidimensional heterogeneity the standard neces-

sary condition of the one-dimensional Mirrlees model.

We then rewrite this necessary condition in terms of behavioral responses, social welfare

weights and income density in the spirit of Saez (2001). However, our multidimensional con-

text implies that the behavioral responses, marginal social weights and income effects which

appear in the tax formula are averaged across individuals pooled at the same income (Propo-

sition 3). More precisely, the optimal marginal tax rate at a given income level is ceteris paribus

inversely related (à la Ramsey (1927)) to the weighted average of the compensated labor sup-

ply elasticities of individuals earning the same income level. It also depends on an average
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of social welfare weights and income effects computed at larger income levels. Saez (2001)

(p. 220) already conjectured that, by taking average behavioral responses and social welfare

weights at any income level, his tax formula should also be valid in the case of multidimen-

sional heterogeneity. We show that Saez’s supposition is correct as soon as the single crossing

condition (with respect to skill) is verified among individuals of the same group, and if the

optimal allocation is smooth enough. Beside clarifying these conditions, we also establish the

correct averaging procedure.

Another difference between Saez (2001)’s tax formula and ours lies in the way to integrate

the following circular process: Consider a change in pre-tax income that occurs either due to

substitution effects (in response to variations of the marginal tax rates), or due to income effects

(in response to variation in tax liabilities). Because of the nonlinearity of the tax schedule, this

change in pre-tax income affects in turn changes the marginal tax rate, which trigger a further

change in pre-tax income due to a substitution effect. The tax formula in Saez (2001) integrates

this circularity process by using, instead of the actual income density, the virtual income density

defined as the density of income that would take place, at an income level, if the nonlinear tax

schedule were replaced by a tangent linear tax at this income level. Using this non-intuitive

virtual income density renders the tax formula not very transparent. Instead, we encapsulate

the circularity process in our definitions of labor supply elasticities and income effects. This

makes the circularity process part of the behavioral responses as we intuitively would expect

it. We also make clear that this circularity process has to be taken into account to derive the

optimal tax schedule.1

This paper gives a path to address a large scope of policy oriented problems for which

it is crucial, but challenging, to include multidimensional heterogeneity. Under relative weak

assumptions, our method can be used to determine the optimal nonlinear taxation of joint labor

and non-labor income, of labour income in the presence of untaxable non-labor income, and of

tax avoidance. These applications need to consider models where individuals earning the same

income may have different labor supply elasticities. Our method also helps to characterize the

optimal nonlinear monopoly pricing when consumers differ in the slope and the intercept of

their demand curves.

Our method enables to treat in a simple way cases where individuals with the same in-

come level have distinct labor supply elasticities. While this is an empirically relevant feature,

previous screening models with multidimensional heterogeneity and one-dimensional action

did not allow for it.2 In random participation models applied to nonlinear pricing (Rochet and

Stole, 2002) and to income taxation (Saez, 2002; Jacquet, Lehmann, and Van der Linden, 2013),

1Revecz (2003) criticizes Saez (2001) on the ground that the effects due to the circularity process does not need to
be taken into account. Saez (2003) replies that including the circularity process is necessary to ensure the consistency
between the optimal tax formula of Saez (2001) and the necessary condition provided in Mirrlees (1971). We show
that this is also the case with multidimensional heterogeneity.

2An exception is Laffont, Maskin, and Rochet (1987) who study the nonlinear pricing model when consumers
differ both in the slope and the intercept of their demand curves. However, they need much more restrictive
assumptions on preferences and the distributions of characteristics than we do.
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individuals differ along two unobserved characteristics, one being the participation cost which

drives the decision to participate. When an individual participates, her choice (along the inten-

sive margin) only depends on her other characteristic. Take individuals who participate and

take the same action. They must have the same other characteristic. In the optimal tax con-

text, this means that workers who earn the same income, but have distinct participation costs,

are endowed with the same skill. Therefore, these workers cannot have distinct labor supply

elasticities.

Choné and Laroque (2010) consider an income tax problem with a bi-dimensional unob-

served heterogeneity. The tractability of their model relies on an aggregator as used in Brett

and Weymark (2003), i.e. an exogenous unidimensional combination of the agents’ character-

istics. The individual intensive choices then only depend on this unidimensional combination.

Hence, two individuals who earn the same income must be characterized by the same level of

the aggregator and therefore cannot have distinct labor supply elasticities. Choné and Laroque

(2010) show moreover that optimal marginal tax rates may become negative thanks to the addi-

tional source of heterogeneity. In their model, individuals who earn the same income can have

distinct social welfare weights so that (average) social welfare weights may not be decreas-

ing with income (see also Boadway, Marchand, Pestieau, and del Mar Racionero (2002)). We

show that, once the social preferences are restricted such that individuals who earn the same

income, have the same social welfare weights, optimal marginal tax rates are positive (Propo-

sition 2). Therefore, our general framework highlights that allowing for heterogeneous labor

supply elasticities is not sufficient to obtain negative marginal tax rates.

Rothschild and Scheuer (2013a,b,c) and Scheuer (2013a,b) consider optimal income tax mod-

els with several sectors. Individuals are characterized by their productivities in these sectors.

They choose their total labor effort and how to split it across each sector. The latter decision

depends on the relative price of labor across sectors, which is determined at equilibrium. In

their model, the disutility of effort of each individual turns out to be a function of the ratio of

their income over an individual wage rate, which is itself a function of her productivities in all

sectors and of the prices in all sectors. Therefore, two individuals who earn the same income

need to have the same wage rate, thereby the same labor supply elasticity.

The paper is organized as follows. The next section introduces the model. Section III ex-

plains how it applies to many relevant problems. Section IV characterizes incentive-compatible

allocation, with a particular emphasis on the pooling mechanism. Section V derives the nec-

essary condition for the optimal allocation. Section VI reinterprets this condition in terms of

behavioral responses, social welfare weights and income density.
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II The model

II.1 Individuals

We assume that individuals differ along their skill level w ∈ R+ and along a vector of char-

acteristics denoted θ ∈ Θ. These characteristics can be labor supply elasticity, gender, levels of

non-labor income, etc. We call a group a subset of individuals with the same θ. We assume that

the set of groups Θ is measurable with a distribution µ(·). Θ may be finite or infinite. Moreover,

Θ may be of any dimension. The distribution µ(.) of the population across the different groups

may be continuous, but it may also exhibit mass points. Within individuals of the same group

θ, skills are continuously distributed according to the conditional density f (·|θ). This density

is assumed positive over the support R+ and continuous. The conditional cumulative distribu-

tion function is denoted F(w|θ) def≡
∫ w

0 f (x|θ)dx. The size of the total population is normalized

to 1, so that: ∫
θ∈Θ

{∫ +∞

0
f (w|θ) dw

}
dµ(θ) = 1

An individual of type (w, θ) admits preferences over after-tax income (or consumption) c

and pre-tax income (income for short) y that are described by the twice differentiable utility

function:

U (c, y; w, θ) = u(c)− v(y; w, θ) with u′(·), v′y(·), v′′yy(·) > 0 > v′w(·) (1)

Utility increases with consumption while it decreases with pre-tax income as a higher pre-

tax income is obtained thanks to a higher supply of effort. Moreover, utility increases with

productivity because earning a given income requires less effort to a more productive agents.

The latter assumption is standard. For instance, when preferences depend on effort ` and when

pre-tax income is equal to the product of effort and skill, y = w× `, we get:

U (c, y; w, θ) ≡ u(c)− V
( y

w
; w, θ

)
with V ′`(·) > 0 V ′′``(·) > 0 (2)

assuming V ′` > 0 implies υ′y > 0 > υ′w thereby U ′
y < 0 < U ′

w.

It is very common to assume that preferences are quasilinear in consumption (i.e u(·) is

linear). Such assumption rules out income effects on the labor supply. Our additively sepa-

rable specification of preferences in (1) generalizes the quasilinear assumption by allowing for

income effects.

The marginal rate of substitution between (pre-tax) income and consumption is:

M (c, y; w, θ)
def≡ −

U ′
y (c, y; w, θ)

U ′
c (c, y; w, θ)

=
v′y(y; w, θ)

u′(c)
(3)

We impose a strict single-crossing (Spence-Mirrlees) condition within each group of individ-

uals endowed with the same θ. For each θ, starting from any positive level of consumption

and pre-tax income, more skilled agents need to be compensated with a smaller increase in

their consumption to accept increasing their pre-tax income by one unit. For each θ ∈ Θ, the
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marginal rate of substitution M (c, y; w, θ) thus decreases in the skill level, as imposed by the

following assumption.

Assumption 1 (Withing group single-crossing condition). For each θ ∈ Θ, and each (c, y), func-

tion w 7→M (c, y; w, θ) maps R+ into R+ with a strictly negative derivative everywhere, so:

M ′
w(c, y; w, θ) < 0 ⇔ v′′yw(y; w, θ) < 0 (4)

That v′′yw(y; w, θ) < 0 is not a restrictive assumption as it holds for instance when preferences

verify (2). Assumption 1 imposes in addition that the marginal rate of substitution decreases

from plus infinity to zero. This is a kind of INADA condition.

II.2 The Government

Let Y(w, θ) and C(w, θ) = Y(w, θ)− T(Y(w, θ)) respectively denote the pre-tax and after-tax

income of an individual of type (w, θ). The government’s budget constraint is:∫
θ∈Θ

{∫ +∞

0
[Y(w, θ)− C(w, θ)] f (w|θ) dw

}
dµ(θ) ≥ E (5)

where E is an exogenous amount of public expenditures.

Turning now to the government’s objective function, we assume that the government uses

a type-specific cardinal representation of individuals’ utility. Let U(w, θ) = u(C(w, θ)) −
v(Y(w, θ); w, θ) denote the utility level enjoyed by an individual of type (w, θ) and Φ(·; w, θ)

denote the type-specific increasing and weakly concave social transformation of individuals’

utility. The government maximizes:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ); w, θ) f (w|θ) dw

}
dµ(θ) (6)

This general specification admits the Benthamite social preferences where Φ(U; w, θ)) ≡ U

as a particular case. The social objective is then:∫
θ∈Θ

{∫ +∞

0
U(w, θ) f (w|θ) dw

}
dµ(θ)

Another particular case is weighted utilitarianism with type-specific weights ϕ(w, θ) and Φ(U; w, θ)) ≡
ϕ(w, θ) ·U. The social objective is then:∫

θ∈Θ

{∫ +∞

0
ϕ (w, θ) U(w, θ) f (w|θ) dw

}
dµ(θ)

Lastly, our social objective includes the Bergson-Samuelson case where the social objective is

a type-independent transformation of individuals utility so Φ(U; w, θ) does not vary with its

two last arguments. The social objective takes then the form:∫
θ∈Θ

{∫ +∞

0
Φ (U(w, θ)) f (w|θ) dw

}
dµ(θ)
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III Applications

We now provide examples of different policy problems that can be solved with our frame-

work, where the Mirrlees (1971) model is extended for heterogeneity in θ. All the additional

sources of heterogeneity that are introduced in each example are not mutually exclusive such

that each argument of the vector θ can be a distinct source of heterogeneity.

III.1 Heterogeneous labor supply elasticities

Our leading example is the case where heterogeneity in θ represent distinct labor supply

elasticities. For instance, the empirical literature suggests that labor supply elasticity is higher

for women than for men of similar earnings. We can rewrite the individual preferences (1) as

isoelastic ones with:

U (c, y; w, θ) = u(c)− θ

1 + θ

( y
w

)1+ 1
θ

with θ > 0 and u′(·) > 0 ≥ u′′(·) (7)

where θ is the elasticity of the labor supply.3 Typically, women have a larger labor supply

elasticity θ than men. In this case, the distribution µ(.) is two mass points with two values

for labor supply elasticity θ depending on the gender. Alternatively, we can also consider that

Θ = R+ if labor supply elasticities are continuously distributed among individuals.

III.2 Joint taxation of non-labor income

We can also consider cases where θ stands for the ability to earn some non-labor income z

that the government observe but cannot distinguish from labor income. This can for instance

be entrepreneurial income, or the rents from housing capital. When the income tax schedule

treats identically labor and non-labor income, as in France, labor income is equal to taxable

income y minus non-labor income z. Let V(y− z, z; w, θ) denote the joint disutility of earning

labor income y− z and non-labor income z for an individual of skill w who belongs to the group

θ, with V ′y−z, V ′z > 0. Parameter θ may here stand for the ability of earning non-labor income.

Individuals of type (w, θ) solves:

max
y,z

u(y− T(y))−V(y− z, z; w, θ)

This program can be solved sequentially, the last step being the choice of non-labor income z

for a given taxable income y. Our model can then be retrieved by defining:

v(y; w, θ)
def≡ min

z
V(y− z, z; w, θ)

Our framework applies when the second-order derivatives of V(·) are such that v′′yw < 0.4

Such a restriction arises naturally when non-labor income is exogenous, as it is the case when

z stands for rents perceive by landlords who have inherited the property they rent.
3θ is the labor supply elasticity if u(·) is linear (no income effect) and is otherwise the Frish labor supply elasticity.
4The envelope theorem induces that v′y = V′y−z and v′w = V′w. Hence, one obtains v′y > 0 > v′w, whenever

V′y−z > 0 > V′w, which is a natural assumption. In contrast, the within-group single-crossing property v′′yw < 0
needs further restrictions on the second-order derivatives of V.

7



III.3 Nonlinear household joint income taxation

The preceding case applies in particular to the optimal joint income taxation of households

when the members of a household take their decisions cooperatively. Then, w and θ denote the

skill levels of the members of the couple and their labor incomes are respectively y− z and z.

III.4 Tax avoidance

Our framework is also relevant to solve an income tax model with fiscal avoidance. Assume

that θ is the individual ability to avoid taxation. We denote z the amount of income that is not

taxed (because the individual has found means that allows her to reduce her taxable income)

and y the taxable income, so that labor income is equal to y + z. Consumption is the sum of

after-tax taxable income c = y− T(y) plus untaxed income z. We assume here that preferences

are quasi-linear in consumption:

c + z−V (y + z, z; w, θ)

where V ′y+z, V ′′y+z > 0. Moreover, V ′z , V ′′z > 0; for a given income, avoiding taxation is more and

more costly (i.e., requires more and more effort). To retrieve our model, we simply define:

v (y; w, θ)
de f
≡ min

z
V (y + z, z; w, θ)− z

and assume that the second-order derivatives of V(·) are such that v′′yw (y; w, θ) < 0 to ensure

the within-group single-crossing property.

III.5 Untaxable non-labor income

We can also consider the case where θ is some exogenous untaxable non-labor income. For

instance, we may think of θ as the imputed rent of owner-occupied housing. In this context,

consumption is c + θ. Let us assume that the social objective is Φ̃(U; w, θ) and that individual

preferences over consumption exhibit constant absolute risk aversion (CARA), the individual

utility can be stated as U (c, y; w, θ) = −e−γ(c+θ) − ṽ(y; w).5 To solve this model, we simply

divide this utility function by a(θ)
def≡ e−γθ which yields individual preferences (1) where:

v(y; w, θ)
def≡ ṽ(y; w)

a(θ)

and u(c) = −e−γc and, we multiply by a(θ) the individual utility in the objective function so

that the social objective is

Φ(U; w, θ)
def≡ Φ̃ (a (θ) ·U; w, θ)

5We here obviously assume that ṽ′y > 0 > ṽ′w, that ṽ′′yw < 0 and that Φ̃′u > 0 ≥ Φ̃′′uu .
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III.6 Nonlinear pricing

Our framework is an adverse selection model where the principal is the government and in-

dividuals are the agents. The principal observes a one-dimensional action (individuals’ pre-tax

income) but individuals’ unobserved characteristics are multidimensional ((w, θ) ∈ R+ ×Θ).

Although we focus in this paper on the optimal taxation applications, this setup can also be

applied to other economic contexts. This simply requires a reinterpretation of the variables.

For instance, Laffont, Maskin, and Rochet (1987) study the problem of a monopolist who sells

a single product and needs to determine a nonlinear price schedule observing only a one-

dimensional action (how much consumers are demanding), while consumers (the agents) differ

both in the slope and in the intercept of their demand curves. They derive the optimal quan-

tity assignment function when these two characteristics are independently and uniformly dis-

tributed and under restrictive assumptions on preferences (they are assumed linear in income

and quadratic in consumption). Our model can then be used to solve this nonlinear pricing

model under less restrictive assumptions on the distributions of characteristics and on prefer-

ences.6 We believe our framework can also be reinterpreted to other economic applications of

adverse selection problems.

IV Incentive-compatible allocations

This section characterizes incentive-compatible allocations. An individual of type (w, θ),

facing the nonlinear income tax y 7→ T(y) solves:

max
y

U (y− T(y), y; w, θ) (8)

The7 solution to the maximization program (8) is Y(w, θ) and we get C(w, θ) = Y(w, θ) −
T(Y(w, θ)) and U(w, θ) = u(C(w, θ)) − v (Y(w, θ); w, θ). When the tax function is differen-

tiable, the first-order condition associated to (8) implies with (3):

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (9)

where the right-hand side is the marginal rate of substitution between pre-tax income and

consumption. As the individual’s objective is maximized for y = Y(w, θ), we must have:

∀(w, θ, y′) ∈ R+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
y′ − T(y′), y′; w, θ

)
Taking y′ = Y(w′, θ′) leads to the following set of incentive constraints:

∀(w, w′, θ, θ′) ∈ R2
+ ×Θ2 U (C(w, θ), Y(w, θ); w, θ) ≥ U

(
C(w′, θ′), Y(w′, θ′); w, θ

)
(10)

6It should be noticed that we restrict in this paper to deterministic mechanism. This is restriction is natural in
the context of optimal income taxation but may be less natural in other contexts.

7If the maximization program (8) admits multiple solutions, we make the tie-breaking assumption that individ-
uals choose among its best options the income level preferred by the government, i.e. the one with the largest tax
liability.
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i.e. the individuals characterized by (w, θ) prefer the bundle (C(w, θ), Y(w, θ)) they have cho-

sen to any other bundle intended to any other type of workers. According to the taxation prin-

ciple (Hammond, 1979; Rochet, 1985; Guesnerie, 1995), for any incentive-compatible allocation,

there exists a nonlinear income tax schedule T(.) that decentralizes it. It is therefore equivalent

for the government to find an income tax schedule and to take into account the reactions of

individuals to this tax schedule incorporating the individual’s maximization problem (8), or

to choose directly an incentive-compatible allocation (i.e. an allocation that verifies the set of

incentive constraints (10)).

We characterize the set of incentive-compatible allocations in two steps. We first charac-

terize incentive-compatible allocations within each group. In this step, the within-group sin-

gle crossing assumption 1 enables to retrieve the properties that are usual when unobserved

heterogeneity is one-dimensional as in Mirrlees (1971). The novelty lies in the second step

where we characterize how these within-group allocations need to be set to ensure incentive-

compatibility.

IV.1 Withing-group incentive constraints

An incentive-compatible allocation has to satisfy (10). It thus has to verify the set of incentive-

compatible constraints within each θ-group, that we call “within-group incentive compatible

constraints”, i.e.:

∀(w, w′, θ) ∈ R2
+ ×Θ U (C(w, θ), Y(w, θ); w, θ) ≥ U

(
C(w′, θ), Y(w′, θ); w, θ

)
(11)

For each θ, characterizing the within-group allocations w 7→ (C(w, θ), Y(w, θ)) that verify

the within-group incentive constraints (11) is the same problem as characterizing incentive

compatible allocations when unobserved heterogeneity is one-dimensional, due to the within-

group single crossing assumption 1. We can therefore retrieve the following standard result:

Lemma 1. Under Assumption 1, The function w 7→ Y(w, θ) is nondecreasing for each θ ∈ Θ.

U(c,y;wL,q) 
=U(cL,yL;wL,q)

U(c,y;wH,q)=
U(cL,yL;wH,q)

cL=C(wL,q)

yL=Y(wL,q)

c

y

Figure 1: Proof of Lemma 1
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The usual graphical proof applies. Figure 1 displays the indifference curves of individuals

belonging to the same group θ but endowed with two distinct skill levels wL < wH. These indif-

ference curves are labelled U (c, y; wL, θ) and U (c, y; wH, θ). The within-group single-crossing

assumption implies that the indifference curve of the low-skilled workers is steeper than the

one of the high-skilled worker. The indifference curves intersect at the bundle (C(wL, θ), Y(wL, θ))

that the government designs for individuals of type (wL, θ). To respect the incentive constraints

(11), the government needs to assign a bundle (C(wH, θ), Y(wH, θ)) to the high-skilled work-

ers that is above the indifference curve of the high-skilled workers U (c, y; wH, θ) (otherwise,

the individuals of type (wH, θ) would prefer the bundle (C(wL, θ), Y(wL, θ)) to the bundle

(C(wH, θ), Y(wH, θ)) designed for them) and below the indifference curve of the low-skilled

workers (otherwise, individuals of type (wL, θ) would prefer the bundle (C(wH, θ), Y(wL, θ)) to

the bundle (C(wH, θ), Y(wH, θ)) designed for them). Consequently, the bundle (C(wH, θ), Y(wH, θ))

designed for the high-skilled workers should be located in the non-shaded area in Figure 1,

which implies that Y(wL, θ) ≤ Y(wH, θ).

Y(·; θ) being nondecreasing, it may exhibit discontinuities over a countable set and it may

also exhibit bunching (i.e. portion where it is constant). It is however standard to consider

only smooth allocations where these two “pathologies” do not arise. We therefore make the

following smoothness assumption.

Assumption 2 (Smooth allocations). For each θ, w 7→ Y(w, θ) is differentiable and maps R+ into

R+ with a strictly positive derivative.

We henceforth use a dot to denote the derivatives with respect to w of functions Y(·, θ),

C(·, θ) and U(·, θ). The following lemma shows the equality between the marginal rate of

substitution between pre-tax income and consumption and the ratio Ċ(w, θ)/Ẏ(w, θ).

Lemma 2. Under Assumptions 1 and 2, for each θ, the mapping w 7→ U(w, θ) is differentiable with a

derivative

U̇(w, θ) = U ′
w(C(w, θ), Y(w, θ); w, θ) = −v′w (Y(w, θ); w, θ) (12)

Moreover, Equation (12) is equivalent to:

Ċ(w, θ)

Ẏ(w, θ)
= M (C(w, θ), Y(w, θ); w, θ) (13)

The proof is in Appendix A. This lemma will be useful to characterize the set of incentive

compatible allocations. Integrating Equation (12) leads to:

U(w, θ) = U(0, θ)−
∫ w

0
v′w (Y(t, θ); t, θ) dt (14)

If the government was able to observe the group θ to which each taxpayer belongs to,

the government would propose group-specific income tax schedules T(·; θ). Only the within-
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group incentive constraints (11) (and not (10)) would then be taken into account.8 The obser-

vation of θ then reduces the set of incentive constraints and increases the possibility for the

government to redistribute income as highlighted in the so-called tagging literature (Akerlof,

1978; Cremer, Gahvari, and Lozachmeur, 2010). In contrast, this paper considers the no-tagging

case where θ is unobserved. We thus need to describe how the various within-group allocations

coexist to verify the full set of incentive constraints (10).

IV.2 Pooling types across θ-groups at each income level

In our context of multidimensional heterogeneity, each level of labor income Y is obtained

by individuals having distinct couples of individual characteristics. In other words, individuals

belonging to distinct θ-groups and endowed with distinct w pool at the same income level

Y(w, θ).9

Let us choose a reference group θ0 ∈ Θ. A key of our analysis relies in the construction and

characterization of the subjacent pooling function. At each income level, this function pools

together (i) individuals of skill w belonging to the reference group θ0 that allow them to earn

Y(w, θ0), and (ii) individuals in another group θ and whose level of skill allows them to earn

the same level of labor income Y(w, θ0) as individuals of skill w belonging to the group θ0.

More precisely, the pooling function, that we denote W(w, θ; θ0) is the mapping that associates

to a skill level w the skill level that is needed to individuals in an another group θ to obtain the

same income level Y(w, θ0) as individuals of skills θ in the reference group. For each θ ∈ Θ,

we have w
Y(·,θ0)7−→ Y(w, θ0)

Y−1(·,θ)7−→ W(w, θ; θ0) which, according to Assumption 2, is a one-to-one

differentiable mapping, with a strictly positive derivative everywhere.

w

y

w

Y(w,0)Y(w,)

45° line W(w, ;0)

Figure 2: The pooling function

8To be more precise, this remark holds only if the government was furthermore allowed to condition taxation
on θ. For instance, despite the government can observe whether a taxpayer is a woman or a man, gender-based
taxation is in practice ruled out for horizontal equity reasons, preventing the government for using an information
that would be otherwise relevant (Alesina, Ichino, and Karabarbounis, 2011). A similar issue arises to condition
income taxation on height (Mankiw and Weinzierl, 2010).

9 We call “pooling” the case where individuals belonging to different groups θ obtain exactly the same pre-tax
income while “bunching” occurs when individuals characterized by distinct w but belonging to the same group θ
obtain exactly the same pre-tax income. Assumption 2 rules out bunching and makes pooling unavoidable.
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Figure 2 illustrates the pooling mechanism. Let us choose a reference group denoted θ0. For

any skill level w, the resulting income level, Y(w, θ0), is represented in the upper-right quarter

of Figure 2. Now, let us choose another element denoted θ of Θ. From the upper-left quarter of

Figure 2, we can find the skill level which gives the same level of income as Y(w, θ0), for this

alternative θ. Using the 45◦-line in the lower-left quarter allows to draw the latter skill level as

a function of the initial skill level w in the lower-right quarter. Repeating this exercise for any

w determines the pooling function W(·, θ; θ0).

By definition of the pooling function, we have Y(W(w, θ; θ0), θ) ≡ Y(w, θ0). Provided

that the allocation is incentive-compatible, it is not possible that individuals endowed with

W(w, θ; θ0) and θ and agents endowed with w and θ0 obtain the same labor income Y(w, θ0)

but distinct consumption levels. Therefore, we know that for each (w, θ), we simultaneously

have

Y(W(w, θ; θ0), θ) ≡ Y(w, θ0) and C(W(w, θ; θ0), θ) ≡ C(w, θ0). (15)

This simultaneous equality can then be used to derive a very useful property of incentive-

compatible allocations: Individuals of different θ-groups that pool at the same income level

needs to have the same marginal rate of substitution between pre-tax income and consumption.

This property is formally presented in the following lemma.

Lemma 3. Under Assumptions 1 and 2, along an incentive-compatible allocation, the bundle designed

for individuals of type (W(w, θ; θ0), θ) coincides with the bundle (C(w, θ0), Y(w, θ0)) designed for

individuals of type (w, θ0), where W(w, θ; θ0) is the unique solution in ω to

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); ω, θ) (16)

Proof According to Assumption 1, Equation (16) admits exactly one solution in ω. Differenti-

ating in w the two equalities in (15) leads to:

Ẏ(W(w, θ; θ0), θ) Ẇ(w, θ) = Ẏ(w, θ0) and Ċ(W(w, θ; θ0), θ) Ẇ(w, θ) = Ċ(w, θ0)

where Ẇ(w, θ) denotes the partial derivative of W in its first argument (skill). Hence,

Ċ(W(w, θ; θ0), θ)

Ẏ(W(w, θ; θ0), θ)
=

Ċ(w, θ0)

Ẏ(w, θ0)

If the allocation is incentive-compatible, then, according to Lemma 2, (13) holds, which implies:

M (C(w, θ0), Y(w, θ0); w, θ0) = M (C(w, θ0), Y(w, θ0); W(w, θ; θ0), θ) (17)

�

Intuitively, if individuals of type (w, θ0) and of type (W(w, θ; θ0), θ) choose the same income

Y, they face the same marginal tax rate T′(.). Hence, from the first-order condition (9) they must

face the same marginal rate of substitution. The key point to note is that, because of the within-

group single crossing Assumption 1, Equation (16) admits exactly one solution in ω. So, (16)
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fully characterizes the pooling function W(·, θ; θ0). The following lemma, which is proved in

Appendix B, shows that once an incentive-compatible allocation is set for the reference group

θ0, the allocation for another group θ is determined by the equality between their marginal

rates of substitution (17).

Lemma 4. Let w 7→ (C(w, θ0), Y(w, θ0)) be a within-group allocation that verifies Assumption 2 and

the within-group incentive-compatible Equation (13). For each w ∈ R+ and each group θ ∈ Θ, let

W(w, θ) be the unique skill level ω that solves (16). Then, there exists a unique incentive-compatible

allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) whose restriction to group θ0 is w 7→ (C(w, θ0), Y(w, θ0)) and

that verifies Assumption 2 if and only if, for each θ, W(·, θ) maps R+ into R+ and admits a positive

derivative Ẇ(w, θ) > 0 everywhere.

The assumption that W(·, θ) admits a positive derivative everywhere plays in our analysis

a role similar to the “first-order approach” in the Mirrleesian literature with a one-dimensional

unobserved heterogeneity. In the sequel, we therefore select the allocation only for the reference

group θ0 and assume that the allocation triggered for the other groups verifies Assumption 2.

Using (3), the equality of the marginal rates of substitution in Equation (17) can be rewritten

as:
v′y (Y(w, θ0); w, θ0)

u′(C(w, θ0))
=

v′y (Y(w, θ0); W(w, θ; θ0), θ)

u′(C(w, θ0))

which simplifies to:

v′y (Y(w, θ0); w, θ0) = v′y (Y(w, θ0); W(w, θ; θ0), θ) (18)

Therefore, the pooling function W(·, θ; θ0) that enables to retrieve (C(·, θ), Y(·, θ)) from (C(·, θ0), Y(·, θ0))

depends on Y(·, θ). However the pooling function does not depend on C(·, θ).10 Consider as

an illustration the case of isoelastic preferences as in (7). Equation (18) then implies that the

pooling function is:

W(w, θ, θ0) =

(
w

1+θ0
θ0 · (Y(w, θ0))

1
θ−

1
θ0

) θ
1+θ

The pooling function thus depend on the choice of Y(·, θ0) whenever the different groups are

endowed with different labor supply elasticities (i.e. when θ 6= θ0).

To the best of our knowledge, the literature has only considered models where what we

call the pooling function depends neither on Y(., .) nor on C(., .). In our words, the pooling

function thus depends only on exogenous characteristics and not on chosen variables. This

is in particular the case when income decisions depends on a one-dimensional aggregator of

the multi-dimensional unobserved types (Choné and Laroque, 2010). Individuals that earn the

same income level are then characterized by the same level of the aggregator and are therefore

characterized by the same labor supply elasticity. In Rothschild and Scheuer (2013b,c,a) and

Scheuer (2013a,b), as detailed in our introduction, individuals who earn the same pre-tax in-

come have the same labor supply elasticity. In Random participation models (Rochet and Stole,

10This simplification relies on the commonly assumed separability in the utility function, see (1).
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2002; Jacquet, Lehmann, and Van der Linden, 2013) or in optimal income tax models with mi-

gration (Blumkin, Sadka, and Shem-Tov, 2012; Lehmann, Simula, and Trannoy, 2013), people

with identical skill levels earn the same pre-tax income, whatever their participation costs. The

pooling function is thus an identity hence, is exogenous.

V The optimal allocation

In this section, we derive necessary conditions for the optimal tax problem. Applying vari-

ational calculus to a small perturbation in the optimal allocation, we derive the necessary con-

ditions of the optimal allocation. The importance of the pooling function we characterized in

the previous section reveals itself here.

Let C (u, y; w, θ) denote the consumption level the governments need to provide to a worker

of type (w, θ) that earns y to ensure her with a utility level u. Function C (·, y; w, θ) is the

reciprocal of U (·, y; w, θ) and we have:

C ′u(u, y; w, θ) =
1

u′ (c)
and C ′y(u, y; w, θ) =

v′y (y; w, θ)

u′c (c)
(19)

where the various derivatives are evaluated at c = C (u, y; w, θ). Let λ denote the Lagrange

multiplier associated to the government’s budget constraint. We define the Lagrangian L of

the government’s problem as:

L
def≡
∫∫

(w,θ)

[
Y(w, θ)− C (U(w, θ), Y(w, θ); w, θ) +

Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ) (20)

The government’s problem consists in maximizing the Lagrangian L within the subset of

incentive-compatible allocations (i.e. of allocations that verify (10)).

V.1 The optimal allocation when θ is observable

Before deriving the necessary conditions of our problem with multidimensional hetero-

geneity, we first remind the necessary conditions of the optimal allocation when the unob-

served heterogeneity has one dimension only. This case arises either when individuals differ in

skills only or in an economy where tagging can be used hence the government observes θ and

can condition its tax schedule on both the income Y and the type of group θ (see, e.g., Akerlof

(1978); Boadway and Pestieau (2006); Cremer, Gahvari, and Lozachmeur (2010)). In that case,

only the within-group incentive constraints (11) have to be taken into account. The optimal tax

schedule can then be found by taking income Y(·, θ) as the control variable, utility U(·, θ) as

the state variable and maximizing (20) subject to (12). The necessary conditions are:

1−
v′y (Y(w, θ); w, θ)

u′ (C(w, θ)))

−v′′yw (Y(w, θ); w, θ)
f (w|θ) =

∫ ∞

w

(
1

u′(C(ω, θ))
− Φ′u(U(ω, θ); ω, θ)

λ

)
f (ω|θ)dω(21a)

0 =
∫ ∞

0

(
1

u′(C(ω, θ))
− Φ′u(U(ω, θ); ω, θ)

λ

)
f (ω|θ)dω(21b)
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These necessary conditions can be using the usual Hamiltonian approach,11 which is equiv-

alent to considering the effects of an infinitesimal variation ∆Y of the control variable Y(., θ)

over a small interval [w − δw, w] of the skill distribution. Because of incentive-compatibility,

from (14), the levels of utility remain unchanged below the skill level w− δw and are changed

by a uniform amount of ∆U = −v′′yw(Y(w); w, θ) · ∆Y · δw for all skill levels above w (where

the perturbation takes place). This small perturbation of the optimal allocation, which is illus-

trated in Figure 3, has two first-order effects on the Lagrangian (20). First, the direct change in

w

u

ΔU = − v’’yw ΔY δw

Initial allocation
Perturbated allocation

w – δw w

w

y

U(w,θ)

Y(w,θ)ΔY

Figure 3: A perturbation of the optimal allocation

the control Y(w, θ) in [w− δw, w] affects (20) by:

(
1−

v′y (Y(w, θ); w, θ)

u′ (C(w, θ))

)
∆Y f (w|θ)δw =

1−
v′y (Y(w, θ); w, θ)

u′ (C(w, θ))

−v′′yw(Y(w); w, θ)
f (w|θ) ∆U

where the second equation in (19) has been used and where the right-hand side is obtained

thanks to ∆U = −v′′yw(Y(w); w, θ) · ∆Y · δw. Second, the uniform change in utility levels U(w, θ)

above w affects (20) by:∫ ∞

w

(
Φ′u(U(ω, θ))

λ
− 1

u′(C(ω, θ))

)
f (ω|θ)dω ∆U

where (19) has again been used. The sum of these two terms must be equal zero if the initial

allocation was optimal. Making ∆Y and δw tending to 0 leads to (21a). Finally, (21b) is obtained

by a uniform change in the utility levels. The latter affects (20) by the latest expression and is

equal to zero since this kind of perturbation of the optimal allocation does not change the state

variable according to (14).

V.2 The optimal allocation when θ is not observable

We can now extend the reasoning of the previous subsection to the case with unobserved

heterogeneity in θ. The following proposition gives the necessary conditions in this context.

11See Appendix C.
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Proposition 1. Under Assumptions 1 and 2, the optimal allocation must verify:

∫
θ∈Θ

−
1−

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)

u′ (C(W(w, θ; θ0), θ))

v′′yw (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)
f (W(w, θ; θ0)|θ)

 dµ(θ) (22a)

=
∫

θ∈Θ

{∫
ω≥W(w,θ;θ0)

(
1

u′ (C(ω, θ))
− Φ′u(U(ω, θ); ω, θ)

λ

)
f (ω|θ)dω

}
dµ(θ)

for all w ∈ R+ and∫
θ∈Θ

{∫
ω∈R+

(
Φ′u(U(ω, θ); ω, θ)

λ
− 1

u′ (C(ω, θ))

)
f (ω|θ)dω

}
dµ(θ) = 0 (22b)

Proof We derive Equation (22a) by considering the first-order effects of a small perturbation in

the optimal allocation. Firstly, we study the impact this perturbation has on each group. Sec-

ondly, we aggregate these effects to compute the total impact on the Lagrangian (20). The

perturbation we consider is triggered by an infinitesimal change ∆Y(θ0) of income Y(·, θ0)

among individuals in the reference group θ0 endowed with a skill level in a small interval

[w− δw(θ0), w].

First, for θ 6= θ0, Equation (18) implies that this perturbation modifies the pooling function

W(., θ; θ0) only within the small interval [w− δw(θ0), w]. Therefore, Y(., θ) is modified only in

the skill interval:

[W(w, θ; θ0)− δw(θ), W(w, θ; θ0)]
def≡ [W(w− δw(θ0), θ), W(w, θ; θ0)] .

where we denote δw(θ) the size of this interval. We moreover denote ∆Y(θ) the average (un-

weighted) change in Y within this interval.

Second, according to (14), because of this change in Y(·, θ) within-group incentive com-

patibility implies that utility levels of individuals whose skills are above this interval must be

modified uniformly by an amount of:

∆U(θ) = −v′′yw(Y(w, θ); w, θ) · ∆Y(θ) · δw(θ)

Figure 3 illustrates the perturbation.

Third, as U(w, θ) = u(C(w, θ))− v(Y(w, θ); w, θ) (see Equation (1)) and that Y(w, θ) is fixed

for ω > W(w, θ; θ0), the uniform change in U(ω, θ) must be entirely due to a uniform change in

u(C(ω, θ)) hence in C(ω, θ) for all ω > W(w, θ; θ0). Thanks to incentive compatibility and (15),

we know that C(ω, θ0) and C(W(ω, θ), θ) are modified in a similar way for all ω > W(w, θ; θ0).

Consequently, the uniform change ∆U(θ) in utility that occurs in each group for skills levels ω

above W(w, θ) must be equal and we have ∆U(θ0) = ∆U(θ) ≡ ∆U . From the previous equation,

we get for all θ that:

∆U = −v′′yw(Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ) · ∆Y(θ) · δw(θ) (23)

which determines ∆Y(θ) as a function of ∆U .
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Using infinitesimal calculus, we now determine the impact of our perturbation on the La-

grangian (20). For each θ, the change ∆Y(θ) of income over skills in [W(w, θ; θ0)− δw(θ), W(w, θ; θ0)]

has two effects on the Lagragian (20).

1. From the first equality in (19) and (20), the change ∆Y(θ) of income for individuals of

group θ and skills in [W(w, θ; θ0)− δw(θ), W(w, θ; θ0)] modifies tax revenue by:(
1−

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)

u′ (C(W(w, θ; θ0), θ))

)
· ∆Y(θ) · δw(θ) · f (W(w, θ; θ0)|θ) · µ(θ)

= −
1−

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)

u′ (C(W(w, θ; θ0), θ))

v′′yw(Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)
· ∆U · f (W(w, θ; θ0)|θ) · µ(θ)

where the density f (.|θ) is evaluated at the skill level where the change of pre-tax income

takes place (i.e., at ω = W(w, θ; θ0)) and where the right-hand side is obtained using (23).

2. The uniform increase ∆U of utility for all ω > W(w, θ; θ0) affects for each θ, the Lagragian

by: ∫
ω≥W(w,θ;θ0)

(
Φ′u(U(ω, θ); ω, θ)

λ
− 1

u′ (C(ω, θ))

)
f (ω|θ)dω · ∆U · µ(θ)

where the first equation in (19) has been used to obtain the second term in the brackets.

Integrating these effects for each group θ, the total effect on the Lagrangian is equal to:

∆L =
∫

θ∈Θ

−
1−

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)

u′ (C(W(w, θ; θ0), θ))

v′′yw (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)
f (W(w, θ; θ0)|θ)

 dµ(θ) · ∆U

+
∫

θ∈Θ

{∫
ω≥W(w,θ;θ0)

(
Φ′u(U(ω, θ); ω, θ)

λ
− 1

u′ (C(ω, θ))

)
f (ω|θ)dω

}
dµ(θ) · ∆U

Such a modification should not have any first-order effect if the original allocation is optimal.

This term must then be equal to zero at an optimum, which leads to (22a).

To derive (22b), we consider a perturbation of the optimal allocation that increases uni-

formly the utility by ∆U for all agents. As the change in utility levels is uniform, U̇(w, θ) are

unchanged. Hence, according to (12), incomes Y(w, θ) are unchanged,12 so the impact on the

Lagrangian is simply:∫
θ∈Θ

{∫
ω∈R+

(
Φ′u(U(ω, θ); ω, θ)

λ
− 1

u′ (C(ω, θ))

)
f (ω|θ)dω

}
dµ(θ) · ∆U

that is the aggregation of the welfare variations across θ-groups. This impact has to be equal to

zero at the optimum, which is (22b). �

12Therefore, the perturbation only modifies C(·, ·) in such way that u(C(w, θ)) is modified by the same amount
of all individuals. Hence the perturbation preservers incentive-compatibility.
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V.3 A case where optimal marginal tax rates are positive

This subsection emphasizes that allowing for heterogeneous labor supply elasticities at each

income level, in the Mirrlees’ model, is not sufficient to obtain negative marginal tax rates.

Boadway, Marchand, Pestieau, and del Mar Racionero (2002) and Choné and Laroque (2010)

introduce a second source of heterogeneity and show that this may lead to negative optimal

marginal income tax rates. The additional heterogeneity induces that individuals who pool at

the same income level Y(w, θ0) are characterized by different social marginal utilities of con-

sumption:

Φ′u(U(W(w, θ)); w, θ) · u′(C(W(w, θ; θ0)))

Therefore, although the concavity of the social welfare function implies that the social marginal

utility of consumption is decreasing in skill within each group θ, the average social marginal

utility of consumption may not be decreasing in income because of aggregation of these social

marginal utilities across groups. This may happen when some groups undervalued in the social

objective are overrepresented at low income levels. In this case, the heterogeneity reduces the

welfare weights put on the low income types, relatively to those of the larger income types.

This yields negative marginal tax rates at the bottom of the income distribution.

As previously stated, their paper however assumes an exogenous pooling function. One

can therefore ask whether an endogenous pooling function may also invalidate the result of

positive marginal tax rates. Consider a Benthamite social objective, so that the argument of

Boadway, Marchand, Pestieau, and del Mar Racionero (2002) and Choné and Laroque (2010),

(i.e. welfare weights increasing with income) for obtaining negative marginal tax rates does

not apply. Proposition 2 states that endogenous pooling alone does not generate negative opti-

mal marginal tax rate. In our general framework, only the argument of Boadway, Marchand,

Pestieau, and del Mar Racionero (2002) and Choné and Laroque (2010) may thus explain why

optimal marginal tax rates may become negative.

Proposition 2. Under Benthamite social preferences, Φ(U; w, θ) ≡ U and if u(·) is concave in con-

sumption, optimal marginal tax rates are positive.

Proof Let us define:

I(w)
def≡
∫

ω≥w

(
1

u′ (C (ω, θ))
− 1

λ

)
·
(∫

θ∈Θ
f (W(ω, θ; θ0)| θ) dµ (θ)

)
· dω

Using the individual first-order condition (9) and (1), we can rewrite 1− T′(Y(w, θ)) = v′y/u′.

Under Benthamite preferences, Φ′u = 1. So, Equations (22a) and (22b) can be respectively

rewritten as:

T′(Y (w, θ0)) ·
∫

θ∈Θ

f (W (w, θ)| θ)
−v′′yw (Y (W (w, θ) , θ) ; W (w, θ) , θ)

dµ(θ) = I(w)

0 = I(0)
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The derivative of I(w) has the sign of 1/λ− 1/u′(C(ω, θ)), which is decreasing in w because

of the concavity of u. I(w) needs thus to be first increasing and then decreasing. It is thus pos-

itive for all skill levels. As v′′yw < 0, optimal marginal tax rates must be positive, by the same

argument as Mirrlees (1971). �

VI An elasticity-based optimal tax formula

This section describes how the conditions describing the second-best optimum may lead

to an optimal tax formula expressed in terms of behavioral responses. This is particularly

important to grasp the economic intuition behind the second-best optimum, to give tax policy

recommendations. We first define a set of useful elasticities and welfare weights. Then we

reinterpret Proposition 1 in these terms.

VI.1 Defining elasticities and welfare weights

We define a compensated tax reform around earnings Y(w, θ) as a reform that changes the

marginal tax by a constant amount τ around Y(w, θ), while leaving unchanged the level of tax

at Y(w, θ). The tax function is changed to T(Y)− τ(Y − Y(w, θ)). The income response effect

is defined as the response of the labor supply to a small lump-sum change ρ in tax liability, so

the tax function becomes T(Y)− τ(Y−Y(w, θ))− ρ. The (w, θ)-individual then solves:

max
y

u(y− T(y) + τ(y−Y(w, θ)) + ρ))− v(y; w, θ) (24)

We compute various elasticities of the solution y to this program when τ, ρ or w are marginally

changed.13 The compensated elasticity14 ε(w, θ) of labor supply at (w, θ) is the elasticity of in-

come y to a uniform increase τ of one minus the marginal tax 1 − T′(Y(w, θ)). The income

response η(w, θ) is the derivative of income y to a lump-sum transfer ρ. We denote α(w, θ) the

elasticity of earnings to skill levels w. Formally, we have:

ε(w, θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂y
∂τ

η(w, θ)
def≡ ∂y

∂ρ
α(w, θ)

def≡ w
Y(w, θ)

Ẏ(w, θ) (25)

These derivatives are computed by applying the implicit function theorem to the first-order

condition associated to the individual’s program (24), which is Y (Y(w, θ), 0, 0; w, θ) = 0 where:

Y (y, τ, ρ; w, θ)
def≡

(
1− T′ (Y(w, θ)) + τ

)
· u′c (y− T(y) + τ (y−Y(w, θ)) + ρ, y; w, θ)

−v′y (y− T(y) + τ (y−Y(w, θ)) + ρ, y; w, θ)

13As the income tax is nonlinear, such marginal changes may induce discrete jumps in the income y chosen. This
may occur when individuals of type (w, θ) are initially indifferent between two global maxima. However, because
of Assumption 1, this type of indifference is associated with a discontinuity of the mapping w 7→ Y(w, θ). As
Assumption 2 rules out such discontinuities, we can safely ignore them.

14This elasticity is compensated in the sense that the tax level is unchanged at earnings level Y(w, θ). This is an
Hicksian elasticity.
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We get:

Y ′y (y, 0, 0; w, θ) = −T′′ u′c + (1− T′)2u′′cc + 2(1− T′)u′′cy − v′′yy (26a)

Y ′τ (y, 0, 0; w, θ) = u′c + (y−Y(w, θ)) ·
(
(1− T′)u′′cc + u′′cy

)
= u′c (26b)

Y ′ρ (y, 0, 0; w, θ) = (1− T′)u′′cc + u′′cy =
u′′cyu′c + u′′ccv′y

u′c
(26c)

Y ′w(y, 0, 0; w, θ) = (1− T′)u′′cw + u′′yw =
v′′ywu′c + u′′cwv′y

u′c
(26d)

where we use the first-order condition (9). The second-order condition (of the individual max-

imization program) is Y ′y ≤ 0. As soon as the second-order condition strictly holds for all

types of individuals, the implicit function theorem applies and income is a differentiable func-

tion of skill within each group. Hence, bunching does not take place and discontinuities in

the function are ruled out. Throughout this section, we thus assume the following regularity

conditions:

Assumption 3. The tax function T(·) is twice differentiable and, for all (w, θ) ∈ R+ ×Θ, the second-

order condition holds strictly: Y ′y (Y(w, θ), 0, 0; w, θ) < 0.

Assumption 2 is automatically satisfied whenever Assumptions 1 and 3 are imposed.15 As-

sumption 3 is thus a further restriction on the regularity of the optimal allocation compared to

Assumption 2. Applying the implicit function theorem at y = Y(w, θ), τ = 0, ρ = 0; w, θ, we

get ∂y/∂x = −Y ′x /Y ′y for x = τ, ρ, w. Hence:

ε(w, θ) = −
v′y

Y(w, θ) ·Y ′y
η(w, θ) = −

u′′ · v′y
u′ ·Y ′y

α(w, θ) =
w v′′yw

Y(w, θ) Y ′y
(27a)

As v′y > 0 and the second-order condition is Y ′y < 0, one gets ε(w, θ) > 0. The sign of

η(w, θ) is negative as the additively separable specification of preference in (1) implies that

leisure is a normal good. The single-crossing assumption 1 moreover ensures that α(w, θ) > 0.

We in particular get:
ε(w, θ)

α(w, θ)
= −

v′y (Y(w, θ); w, θ)

w · v′′yw (Y(w, θ); w, θ)
(27b)

Hence, the ratio between the compensated and the skill elasticities does not depend on the

curvature of the tax function. Moreover, we get:

η(w, θ) = Y(w, θ) · u′′(C(w, θ))

u′(C(w, θ))
· ε(w, θ) (27c)

so the ratio between income effects and the compensated elasticities is the same among indi-

viduals earning the same income level.

These elasticities differ from those in the tax literature (see e.g.Saez (2001)) by the presence

of T′′ in Y ′y < 0 (see Equation (26a)) which appears in the denominators of ε(w, θ), η(w, θ)

15Under Assumption 3, the implicit function theorem applies. It in particular induces that within each group,
income is a differentiable function of skill with an elasticity α(w, θ) given in Equation (27a). Assumption 1 implies
the latter to be strictly positive.
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and α(w, θ), and which accounts for the nonlinearity of the income tax schedule. An exoge-

nous change in either w, τ, or ρ induces a direct change in earnings ∆1Y(w, θ). However, this

change in turn modifies the marginal tax rate by ∆1T′ = T′′ (Y(w, θ)) × ∆1Y(w, θ), thereby

inducing a further change in earnings ∆2Y(w, θ). Therefore, a “circular process” (Saez (2001),

Saez (2003)) takes place: The income level determines the marginal tax rate through the tax

function, and the marginal tax rate affects the income level through the substitution effect. The

term T′′ (Y(w, θ)) · u′c appears in the denominators of our elasticities and income responses

ε(w, θ), α(w, θ), η(w, θ) (through Y ′y to take this circular process into account.

Let h(·|θ) denote the conditional density of income y within the group θ and H(·|θ) be the

associated conditional cumulative distribution function. One has from Lemma 1 that H(Y(w, θ)|θ) =
F(w|θ). Differentiating both sides in skill w and using (25), we get:

h(Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h(Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

(28)

The unconditional income density at income y = Y(w, θ0), that is the mass of individuals

(endowed with distinct w and θ) who earn the same income Y(w, θ0), is:

ĥ(Y(w, θ0))
def≡
∫

θ∈Θ
h (W(w, θ; θ0)|θ) dµ(θ) (29)

We can now define the mean compensated elasticity at income level Y(w, θ0) as:

ε̂(Y(w, θ0))
def≡
∫

θ∈Θ ε (W(w, θ; θ0)|θ) h (W(w, θ; θ0)|θ) dµ(θ)∫
θ∈Θ h (W(w, θ; θ0)|θ) dµ(θ)

(30)

We similarly define the mean income effect at income level Y(w, θ0) as:

η̂(Y(w, θ0))
def≡
∫

θ∈Θ η (W(w, θ; θ0)|θ) h (W(w, θ; θ0)|θ) dµ(θ)∫
θ∈Θ h (W(w, θ; θ0)|θ) dµ(θ)

(31)

From Equation (27c), we get:

η̂(Y(w, θ0)) = Y(w, θ0) ·
u′′ (C(w, θ0))

u′ (C(w, θ0))
· ε̂(Y(w, θ0)) (32)

We define g(w, θ) the endogenous marginal social weight associated with workers of type

(w, θ), expressed in terms of public funds by:

g(w, θ)
def≡ Φ′u (U(w, θ); w, θ) ·U ′

c (C(w, θ), Y(w, θ); w, θ)

λ
(33)

The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) in terms

of public funds. The mean marginal social weight at income Y(w, θ0) is thus:

ĝ(Y(w, θ0))
def≡
∫

θ∈Θ g (W(w, θ; θ0)|θ) h (W(w, θ; θ0)|θ) dµ(θ)∫
θ∈Θ h (W(w, θ; θ0)|θ) dµ(θ)

(34)

It gives the average of the marginal social weights of people endowed with distinct w and θ but

earning the same income level Y(w, θ).
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VI.2 Obtaining an elasticity-based optimal tax formula

Using the definitions of the above elasticities, income effects, income densities and welfare

weights, we now derive the optimal tax formula in terms of empirically meaningful variables.

Proposition 3. Under assumptions 1 and 2, the optimal tax schedule has to satisfy:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
· 1− Ĥ(y)

y ĥ(y)
·
(

1−

∫ ∞
y [ĝ(z) + η̂(z) · T′(y(z))] · ĥ(z)dz

1− Ĥ(y)

)
∀y ∈ R+(35a)

1 =
∫ ∞

0

[
ĝ(z) + η̂(z) · T′(Y(z))

]
· ĥ(z)dz (35b)

The proof is provided in Appendix D and consists in reinterpreting the first-order condi-

tions that were derived in Proposition 1. Equation (35a) generalizes the elasticity-based optimal

tax formula of Saez (2001) to the case where θ is not unique. It differs from the latter in three

important aspects. First, our tax formula depends on the actual income density and not on the

virtual density. Second, the elasticities ε̂(·) and η̂(·) are weighted averages of elasticities ε(·, ·)
and η(·, ·) that take into account the nonlinearity of the optimal tax schedule through the term

T′′(·) in Y ′y and in Equation (27a). However our compensated labor elasticity times the actual

density is equal to the traditional compensated elasticity times the virtual income density of

Saez (2001). Last, we show that our tax formula applies in a context with multidimensional

unobserved heterogeneity.

According to Equation (35a), there are three different arguments to depart from a linear

income tax schedule. The first is that the mean compensated elasticity of labor supply ε̂(y) may

vary with income. In line with the Ramsey (1927) inverted elasticity rule, optimal marginal

tax rates are ceteris paribus larger at income levels where the compensated elasticity ε̂(y) is

lower. In our context, this elasticity is endogenous for different reasons. First, it depends

on the curvature of the income tax function, as it becomes apparent with the term −T′′ u′c
in Y ′y (see (26a)), hence in the expression of the elasticity ε(·, ·) (see (27a)). This endogeneity

already prevails in the Mirrlees framework where θ is homogeneous, see Jacquet, Lehmann,

and Van der Linden (2013). Moreover, the pool of types (w, θ) that bunch at any income level

is endogenous. Therefore, the mean elasticity ε̂(y) increases when among the types (w, θ) such

that Y(w, θ) = y, the proportion of individual with an elasticity ε(w, θ) larger than the average

ε̂(y) increases. This composition effect is a key novelty of the present setting, compared to the

Mirrleesian model.

The second reason to depart from a flat tax is that, at a given level of income, the optimal

marginal tax rate increases (in absolute terms) with the distribution term (1 − Ĥ(y))/(yĥ(y))

of the income distribution at income level y, the second term in the right hand-side of (35a).

This is because substitution effects at income level y are larger the bigger is the income density

ĥ(y) and the larger is the income y, while the tax level effects (i.e., the change in the level of

tax collected) are larger the larger is the mass 1− Ĥ(y) of individuals with income above y.

The distribution term is very likely to vary with income, unless incomes are Pareto distributed
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everywhere. Diamond (1998) and Saez (2001) argue that the distribution term is empirically

constant in the upper part of the income distribution but is not everywhere constant. Moreover,

the income distribution is typically unimodal. So the distribution term is decreasing beyond

this mode, implying lower marginal tax rates in absolute values. Finally, it is worth stressing

that the distribution term of the income distribution is endogenous, for two main reasons. The

first is the endogeneity of the elasticity α(w, θ) of income with respect to the level of skill.16 Even

when θ does not vary, the nonlinearity of the income tax schedule implies that this elasticity

depends on the curvature of the tax schedule (see (27a)), and is thus endogenous. Second,

the pool of individuals (w, θ) who pool at any income level is endogenous, so the distribution

term may also be affected by a composition effect, as emphasized by Cremer, Gahvari, and

Lozachmeur (2010).

Third, as emphasized by the third term of the right hand-side of (35a), optimal marginal

tax rates varies with the mean of social welfare weights ĝ(z) and the mean of income effects

η̂(z) · T′(z) for income levels z above y. The larger ĝ(z), the more the government values

the well-being of agents at this level of income z hence, the lower should be the marginal

tax rate below this level. The larger (η̂(z)(< 0)) in absolute value, the higher should be the

marginal tax rate below income z, because an increase in the level of tax paid by workers

with income z induces them to work more through the income effect. Our formulation for

the contribution of the income effect differs from Saez (2001) who defines the income effect

response along a linear tax schedule. Saez therefore needs to use the virtual earnings density

instead of the actual one to correct the income effect term for the circularity process. Conversely,

we define η taking this circular process into account in (27a), which simplifies our formula

of the optimal marginal tax rates. Again, the means of social welfare weights ĝ(z) and of

income effects η̂(z) · T′(z) typically vary with earnings. An exception is when the government

is Maximin (Rawlsian) and the utility function is quasilinear (i.e. u(·) is linear) so that ĝ(z) = 0

and η̂(z) · T′(z) = 0. Again, composition effects are new sources of endogeneity for ĝ(·) and

η̂(·), compared to the framework of Mirrlees. The composition effects on social welfare weights

are central in the analyses of Boadway, Marchand, Pestieau, and del Mar Racionero (2002) and

Choné and Laroque (2010).

A Proof of Lemma 2

Following, e.g. Salanié (2005), from the taxation principle, individuals choose the type w′, θ′

that they want to mimic, i.e. they solve

max
w′,θ′

U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
16From (28), the distribution terms of the conditional skill (exogenous) and of the income (endogenous) distribu-

tion are linked through:
1− H(Y(w, θ)|θ)

Y(w, θ) · h(Y(w, θ)|θ) = α(w, θ) · 1− F(w|θ)
w · f (w|θ)
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Function (w′, θ′) 7→ U (C(w′, θ′), Y(w′, θ′); w, θ) admits a partial derivative with respect to w′

that is equal to:

Ċ(w′, θ′) U ′
c
(
C(w′, θ′), Y(w′, θ′); w, θ

)
+ Ẏ(w′, θ′) U ′

y
(
C(w′, θ′), Y(w′, θ′); w, θ

)
The first-order condition implies that this expression must be nil at (w′, θ′) = (w, θ). Using (3)
leads to (13). Differentiating in w both sides of U(w, θ) = U (C(w, θ), Y(w, θ); w, θ) leads to:

U̇(w, θ) = U ′
c (C(w, θ), Y(w, θ); w, θ) Ċ(w, θ) +U ′

y (C(w, θ), Y(w, θ); w, θ) Ẏ(w, θ)

+ U ′
w (C(w, θ), Y(w, θ); w, θ)

=

(
Ċ(w, θ)

Ẏ(w, θ)
−M (C(w, θ), Y(w, θ); w, θ)

)
U ′

c (C(w, θ), Y(w, θ); w, θ) Ẏ(w, θ)

+ U ′
w (C(w, θ), Y(w, θ); w, θ)

Hence, (12) holds if and only if (13) holds.

B Proof of Lemma 4

We first show that there exists at most one allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies
Assumption 2 and such that (C(w, θ0), Y(w, θ0)) = C(w, θ0), Y(w, θ0)). We then show that this
allocation verifies the whole set of incentive constraints (10).

To build the entire incentive compatible allocation (w, θ) 7→ (C(w, θ), Y(w, θ)), we must
obviously choose (C(w, θ0), Y(w, θ0)) = C(w, θ0), Y(w, θ0)) for any skill level in the reference
group.

For each group θ, Y(·; θ) verifies Assumption 2 if and only if its reciprocal Y−1(·; θ) is dif-
ferentiable with a strictly positive derivative and maps R+ into R+. Let then y ∈ R+ be an
income level. As Y(·, θ0) satisfies Assumption 2, there exists a unique skill level w such that
y = Y(w, θ0). Then according to Lemma 3, among individuals of group θ, only thos of skill
W(w, θ) are assigned to the income level y = Y(w, θ0).17 Therefore, Y−1(·; θ) must be defined
by:

Y−1(·; θ) : y
Y−1(·,θ0)7−→ w = Y−1(y, θ0)

W(·,θ)7−→ Y−1(y, θ)

Hence, Y−1(·, θ) is differentiable and is defined over R+. It admits a positive derivative ev-
erywhere and takes value on the whole R+ if and only if W(·, θ) does. Hence, Y(·, θ) is a
differentiable increasing function with positive derivatives that maps R+ onto R+.

We now show that C(w, θ) is also uniquely determined for any skill level ω and group θ.
This is because we now from above that for each type (ω, θ), there exists a single skill level
such that Y(ω, θ) = Y(w, θ0). Incentive compatibility then requires that C(ω, θ) needs also to
be equal to C(w, θ0).

This ends the proof that given an incentive-compatible allocation w 7→ (C(w, θ0), Y(w, θ0))
defined with the reference group that verifies Assumption 2, there exists at most a unique al-
location (w, θ) 7→ (Y(w, θ), C(w, θ)) that can be incentive-compatible. We now verify that this
allocation does verify the incentive constraint (10).

We first notice that the allocation (w, θ) 7→ (Y(w, θ), C(w, θ)) is built in such a way that one
has:

Y(ω, θ) = Y(w, θ0) and C(ω, θ) = C(w, θ0)

if and only if ω = W(w, θ) and (17) holds. Differentiating in w both sides of the two equations:

Y(W(w, θ), θ) = Y(w, θ0) and C(W(w, θ), θ) = C(w, θ0)

17Hence function W(·, θ) coincides with the pooling function W(·, θ; θ0).
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and rearranging terms leads to:

Ċ (W(w, θ), θ0)

Ẏ (w, θ0)
=

Ċ (W(w, θ), θ0)

Ẏ (w, θ0)

As w 7→ (C(w, θ0), Y(w, θ0)) is assumed to verify the within-group incentive-compatible Equa-
tion (13), the left-hand side of the latter equation is equal to M (C(w, θ0), Y(w, θ0); w, θ0). Given
the definition of function W(·, θ), we have that w 7→ (C(w, θ), Y(w, θ)) also verifies Equation
(13). From Lemma 2, it thus verifies within-group incentive constraints (11).

We finally verify whether the inequality (10) is verified for any (w, w′, θ, θ′) ∈ R2
+ ×Θ2. We

now there exists ω ∈ R+ such that

Y(ω, θ) = Y(w′, θ′) and C(ω, θ) = C(w′, θ′)

Hence (10) is equivalent to:

U (C(w, θ), Y(w, θ); w, θ) ≥ U (C(ω, θ), Y(ω, θ); w, θ)

and is verified as w 7→ (C(w, θ), Y(w, θ)) also verifies Equation (13), and thus from Lemma 2, it
verifies the within-group incentive constraints (11).

C Equations (21a) and (21b)

Define the Hamiltonian for each θ as(
Y(w, θ)− C (Y(w, θ), U(w, θ); w, θ) +

Φ (U(w, θ); w, θ)

λ

)
· f (w|θ)− q(w|θ) · v′w (Y(w, θ); w, θ)

The necessary conditions are, using (19):

0 =

(
1−

v′y(Y(w, θ); w, θ)

u′(C(w, θ))

)
· f (w|θ)− q(w|θ) · v′′yw (Y(w, θ); w, θ) (36a)

−q̇ (w|θ) =

(
Φ′U (U(w, θ); w, θ)

λ
− 1

u′(C(w, θ))

)
· f (w|θ) (36b)

0 = q(0|θ) (36c)
0 = lim

w 7→∞
q(w|θ) (36d)

Combining (36b) with (36d) leads to

q(w|θ) =
∫ ∞

w

(
Φ′U (U(ω, θ); ω, θ)

λ
− 1

u′(C(ω, θ))

)
· f (ω|θ)dω (36e)

Combining (36a) with (36e) leads to (21a). Combining (36c) with (36e) leads to (21b).

D Proof of Proposition 3

Let y ∈ R+. According to Assumption 2, there exists a single skill level w such that
y = Y(w, θ0). From (9), we know that the first-order condition of the individual maximiza-
tion program can be written as:

1− T′(Y(w, θ)) =
v′y(Y(w, θ); w, θ)

u′(C(w, θ))
(37)
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The term between brackets in the right-hand side of (22a) can then be rewritten as:

−
1−

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)

u′ (C(W(w, θ; θ0), θ))

v′′yw (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)
· f (W(w, θ; θ0)|θ)

= T′ (Y(w, θ0)) ·
ε (W(w, θ; θ0), θ)

α (W(w, θ; θ0), θ)
· W(w, θ; θ0)

v′y (Y(W(w, θ; θ0), θ); W(w, θ; θ0), θ)
· f (W(w, θ; θ0)|θ)

=
T′ (Y(w, θ0))

1− T′ (Y(w, θ0))
· ε (W(w, θ; θ0), θ)

α (W(w, θ; θ0), θ)
· W(w, θ; θ0)

u′ (C(W(w, θ; θ0), θ))
· f (W(w, θ; θ0)|θ)

=
T′ (Y(w, θ0))

1− T′ (Y(w, θ0))
· Y(w, θ0)

u′ (C(W(w, θ; θ0), θ))
· ε (W(w, θ; θ0), θ) · h(Y(w, θ0)|θ)

The first equality is obtained using Equations (27b), (37) and the fact that Y(W(w, θ; θ0), θ) =
Y(w, θ0) from the definition (15) of W(·, θ; θ0). The second equality uses (37) again. The third
equality follows (28). It implies with (30) that Equation (22a) can be rewritten as:

T′ (Y(w, θ0))

1− T′ (Y(w, θ0))
· ε̂ (Y(w, θ0)) ·Y(w, θ0) · ĥ(Y(w, θ0)) = J(w) (38)

where

J(w)
def≡ u′ (C(w, θ0)) ·

∫
θ∈Θ

{∫
ω≥W(w,θ;θ0)

(
1

u′ (C(ω, θ))
− Φ′u(U(ω, θ); ω, θ)

λ

)
f (ω|θ)dω

}
dµ(θ)

(39)
J(·) admits for derivative J̇(w) where:

J̇(w) = Ċ(w, θ0) ·
u′′ (C(w, θ0))

u′ (C(w, θ0))
· J(w)∫

θ∈Θ

{
Φ′u (U(W(w, θ; θ0), θ); W(w, θ; θ0), θ) u′ (C(W(w, θ; θ0), θ))

λ
− 1
}

Ẇ(w, θ) f (W(w, θ; θ0)|θ) dµ(θ)

=
∫

θ∈Θ
{g (W(w, θ; θ0), θ)− 1} · Ẇ(w, θ) · f (W(w, θ; θ0)|θ) · dµ(θ) + Ċ(w, θ0) ·

u′′ (C(w, θ0))

u′ (C(w, θ0))
· J(w)

where (33) has been used. Deriving with respect to the skill w both sides of (15) and of C(w, θ) =
Y(w, θ)− T (Y(w, θ)), we get that:

Ẇ(w, θ) =
Ẏ (w, θ0)

Ẏ (W(w, θ; θ0), θ)
and Ċ(w, θ) =

(
1− T′ (Y(w, θ))

)
· Ẏ(w, θ)

We thus obtain:

J̇(w) =

(∫
θ∈Θ
{g (W(w, θ; θ0), θ)− 1} · f (W(w, θ; θ0)|θ)

Ẏ(W(w, θ; θ0), θ)
· dµ(θ)

+
(
1− T′ (Y(w, θ0))

)
· u′′ (C(w, θ0))

u′ (C(w, θ0))
· J(w)

)
· Ẏ(w, θ0)

Using (28) and (38), J̇(w) can be rewritten as:

J̇(w) =

(∫
θ∈Θ
{g (W(w, θ; θ0), θ)− 1} · h (Y(w, θ0)|θ) dµ(θ)

+ T′ (Y(w, θ0)) ·Y(w, θ0) ·
u′′ (C(w, θ0))

u′ (C(w, θ0))
· ε̂(Y(w, θ0)) · ĥ(Y(w, θ0))

)
· Ẏ(w, θ0)

27



Using (32) and (34), we get:

− J̇(w) =
{

1− ĝ(Y(w, θ0))− η̂(Y(w, θ0)) · T′ (Y(w, θ0))
}
· ĥ (Y(w, θ)) · Ẏ(w, θ0)

As J(w) =
∫

x≥w(− J̇(x))dx, we get

J(w) =
∫

x≥w

{
1− ĝ(Y(x, θ0))− η̂(Y(x, θ0)) · T′ (Y(x, θ0))

}
· ĥ (Y(x, θ)) · Ẏ(x, θ0) · dx

Changing variables by posing z = Y(x, θ0), we get

J(w) =
∫

z≥Y(w,θ0)

{
1− ĝ(z)− η̂(z) · T′ (Y(z))

}
· ĥ (Y(x, θ)) · dz (40)

Plugging (40) into (38) and rearranging terms gives (35a). Combining (22b), (39) and (40) leads
to (35b).
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