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ABSTRACT

This paper analyzes conditions for strong rationality & #guilibrium in a linear/Gaussian

model of a competitive commodity market, where firms aresdéhtially informed about costs

of production and the precision of private information islegenously acquired. A Rational

Expectations Equilibrium is said to be Strongly Rationalgeductively Stable, (SREE) when

it is the unique rationalizable outcome. A locally SREE &xighen the informativeness of the
price is below a threshold that is increasing in the infoivesiess of private information and

the elasticity of marginal cost of information acquisitidn the spirit of the Grossman Stiglitz

paradox, informativeness of the SREE price is bounded. drcse with constant marginal
costs, we characterize the set of rationalizable inforonapirecisions. Furthermore, a SREE
requires that marginal costs of information are neithedd@aonor too large. Exogenous public

information always favors stability.
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| INTRODUCTION

Although playing a central role in modern economic thedrg, ltypothesis of rational expecta-
tions is often viewed with skepticism. Indeed, the concépational expectations equilibrium
(REE) is quite ambitious if one takes into account the uryileglsevere requirements on agent’s
information gathering and processing capabilities. Mattgnapts have been made to justify
this concept and to state a clear set of assumptions thay irafibnal expectations. One such
attempt is the concept of strongly rational expectationsliggium (SREE) proposed by Gues-
nerie (1992, 2002). This concept relies on the two hypotheseommon knowledge (CK) of
individual Bayesian rationality and model and asks, whedHREE is the only outcome implied
by these two hypotheses. Whenever this is the case, a REEe@urelksed (or 'educed’) by ra-
tional agents computing the logical consequences of thesSKmaptions through some kind of
mental "eductive’ process.A REE ist then said to be a SREE (or eductively stable, or stabl
for short). Eductive stability is based on a suitably spedifjame form of the model. Agents
use an iterative process to eliminate non best respongediigir strategy sets and stability ob-
tains whenever this process converges to the REE. One efléncts attention to local stability
by adding a further CK assumption, namely CK that agents $hstrategies in a given neigh-
borhood of the REE. Guesnerie (2002) provides an overviellveotonditions for existence of
SREE that have been derived in various economic contexigeferal, a REE is not always
stable, so that stability imposes restrictions on the patara of the model). In particular, con-
ditions for existence of a SREE have been derived in modélsaglymmetric information, both
in models where agents are unable to use the informatiosriied through current market
prices (cf. Heinemann (2004)), and in models where thisrmédion is used (cf. Desgranges
et al. (2003), Desgranges (1999), Heinemann (2002)). Hewel these papers assume an
exogenously given amount of private information. None ehthanalyzes, whether an endoge-
nous acquisition of private information causes additioaatrictions to REE eductive stability.
The present paper tries to fill this gap.

The model:We consider a simple linear/Gaussian model of a compettvemodity market
with endogenous information acquisition and we derive tredions for existence of a SREE.
The model follows the early contributions of Grossman ()9@ossman and Stiglitz (1980),

it may be hard to believe that economic agents are sophtistiemough to draw all the consequences of CK
assumptions, namely to exploit the fact that everyone kribateveryone knows . a certain property. Still, a few
steps of reasoning may not be out of reach. Costa-Gomes avdd@d (2006) provide experimental evidences
that economic agents sometimes use such reasoning basarharder beliefs.



and Verrecchia (1982), although we consider risk neutrad (@t CARA) agents. Every agent
chooses the precision of the private information he wantsi§g independently from what the
others do (there is no market for information, with an enchages price of the private signal, like
in Veldkamp (2006a,b)). An additional stochastic factdo¢bastic shifts in demand) makes the
price a noisy signal of the agents’ private information. Phiee is then an endogenous public
signal, and agents use the information conveyed by the.pFlee model (unsurprisingly) admits
a unique linear REE. In order to define stability, we desctitfeemodel as a game, so that the
REE appears as a Nash equilibrium. We say that the REE iestdi#never it is the unique
rationalizable outcome. We focus on local stability, tlsatve exogenously restrict the strategy
sets to a neighbourhood of the equilibrium. We give theeefoecise game-theoretical grounds
to our stability concept.

Results: In the case with exogenously given information, Desgraeges (2003), Desgranges
(1999) and Heinemann (2002) stress the role of the infoxmadéss of the market price for
existence of a SREE. In particular, Desgranges (1999) amdeH®nn (2002) show that the
REE is locally stable whenever prices reveal less inforometthan a private signal. The question
raised in this paper is then whether or not this stabilityditbon is affected by the endogeneity
of information acquisition (and if so, how).

The central result of this paper states that the REE is ps#dble whenever two conditions
are satisfied: the above condition derived in the case witgexous private information, and a
new condition specifying another upper bound for the infatireness of the equilibrium price.
This new upper bound relies on the elasticity of the margoosk of information acquisition
(w.r.t. the precision of the acquired private signal). Thaerslogenous acquisition of information
makes existence of a SREE more difficult when the second naditoon is stronger than the
first one. We show that this is the case whenever the margostlifanction is flat enough.
In particular, in the limit case with constant marginal ¢astSREE exists if and only if the
informativeness of the market price is less than one halfinf@mativeness of the private
signals. The result can be explained as follows. Endogeginformation acquisition adds one
first order condition to the optimization problem of an ag@guating the marginal cost and
the expected marginal benefit of private information). THditonal stability condition comes
from this additional first order condition. In the case of @egt marginal cost of information,
a slight change in the acquired precision of informationnewgh to accommodate a change
in the expected marginal benefit. It is therefore not necgssaknow others’ expectations
precisely to guess what information precision they wanttpuire: Endogeneity of information
acquisition is innocuous for stability. In the case of a flatrginal cost, the acquired precision



of information is very sensitive to the expected marginaldii. As others’ expectations are a
priori unknown, guessing the precision of the acquiredrimi@tion is not easy, and existence of
a SREE is more difficult to obtain.

For the sake of completeness, recall that the intuitionHerdther condition (the stability
condition in the case with exogenous information) is thiofeing. Agents’ private information
is aggregated into the price because agents use theirgsigatals to make their decisions. The
exact informational content of the price (the correlatietween price and private information)
depends then on agents’ decisions, and the informatioactett from the price by an agent
depends on his beliefs on others’ decisions. In the case efyainformative REE price, agents
have an incentive to learn excessively from the price, winietkes their decisions very sen-
sitive to their beliefs on the correlation between price aridrmation. As agents’ beliefs are
a priori unknown, agents’ decisions (and therefore thermédional content of the price) are
not easy to predict. This argument makes the REE unstabteelopposite case of a not very
informative REE price, the same argument leads to existehaeéSREE: with the price being
not very informative, agents’ decisions does not depenchadheir own interpretation of the
informational content of the price. These decisions arestfbee easy to predict, and the REE
is a SREE.

In the case of constant marginal costs, we characterizeeexis of a global SREE in terms
of exogenous parameters. We illustrate the eductive psanes simple fashion. We explicitly
compute the set of rationalizable precisions of informagiwe are unfortunately unable to fully
describe the set of rationalizable outcomes), and we shawitils set shrinks to the equilibrium
precision when the REE tends to be stable.

We then state a stability result that is somewhat remintdtem the Grossman and Stiglitz
paradox (cf. Grossman and Stiglitz (1980)) of impossiiiit informationally efficient mar-
kets. The GS paradox says that prices cannot be fully rexgedlacquisition of information is
a costly activity. Indeed, in such a case, no agent would haviecentive to acquire informa-
tion, prices will reveal anyway, while prices cannot be mfative if no one acquires private
information. As it is now well known, this paradox is a strigiconsequence of the fact that in-
formation acquisition is a strategic substitute (the mafermation others agent buy, the more
revealing the price is, and the less information | want to)buy our model, as in Verrecchia
(1982), one formal result corresponding to the GS paradtixeiexistence of an upper bound
on the informativeness of the REE pri¢ale show thast there also exists an upper bound on
the informativeness of a SREE price. This upper bound isttrsmaller than the previous

2In Grossman and Stiglitz (1980), the informativeness oRE& does not depend of the (positive) variance of
the noise, while no REE exists when there is no noisy supply.



upper bound of the informativeness of the REE price. Heral@ng account of the stability
requirement reinforces the logic underlying the GS paradox

In the case with constant marginal costs, the REE is statilereivhen the marginal cost
is below a first threshold or above a second threshold (it stalnle between the two thresh-
olds). As there is a one-to-one relation between the mdrgmst and the precision of the
acquired information (a high marginal cost correspondsltmeprecision), this result is actu-
ally a consequence of the one obtained in Desgranges (188%einemann (2002) in the case
of exogenous information (in this context, the REE is unstétr intermediate values of infor-
mation precision, stable otherwise). It follows that desiag the marginal costs of information
acquisition sometimes destabilizes the equilibrium.

Lastly, in the case with constant elasticity of marginaltspa SREE obtains if and only if
the precision of the prior public information is large enbughis result shows that the influence
of public information on REE stability is not the same wheblpuinformation is exogenous
or endogenous: it is only public information in form of théarmation contained in the market
price, which causes expectational coordination diffiegltwhereas public information in form
of a priori knowledge always tends to attenuate such diffiesl|

Literature: As already emphasized, this paper is essentially a piecedaidprevious works
about eductive stability under asymmetric informationill,.Ste results in this paper can be
linked to the following strands of literature as well.

In relation with the literature on acquisition of informati, we follow Grossman and Stiglitz
(1980): information acquisition is a strategic substifated our stability results reinforce the
idea that prices cannot convey too much private informatkstill, many papers (Barlevy and
Veronesi (2000), Veldkamp (2006a,b), Chamley (2007) amathgrs) exhibit motives that
make information acquisition a strategic complement (&ufeathat sometimes leads to equi-
librium multiplicity). A point that is beyond the scope ofistpaper, but that may be fruitful for
further research, is that instability can be interpretedragating uncertainty and restoring an
incentive to buy more information. It follows that, even iframework where information is a
strategic substitute, focusing on equilibrium stabilitgyrsustain the idea that the information
acquired by agents creates an incentive for acquiringduitiformation.

In relation with the literature on public information, M@iand Shin (2002), and Angeletos
and Pavan (2007) (among others) find a possible bad effecthicinformation (more public
information leads to a decrease of welfare). The drivingdarf this effect is the commonality
of the information available to each agent - that is the sfzB@noise common to the informa-
tion of all the agents (private information can generateatieg effects along the same lines).



On the other hand, Angeletos and Werning (2006), and Hekvad. (2006) show how endoge-
nous public information (i.e. prices) can restore multiptpiilibria in a model of a currency
attack a la Morris and Shin (1998) where informational asytri@s prevent CK of actions.

Hellwig (2002) shows that precise public information cavofamultiple equilibria even when

it is exogenous. Our point here is to distinguish betweemgerous public information (which

is always good for stability) and the endogenous publicrimiation (the price, which must not
be too informative). Considering simultaneously two sesraof public information shows that
these two sources can play two distinct roles.

The remainder of the paper is organized as follows: Sectitreh presents the model and
the unique REE. Section Il defines the SREE and states ¢onslifor existence of a SREE.
Section IV discusses the informativeness of the price (tftes§&nan Stiglitz paradox), the role
played by the marginal costs of information acquisition gudblic information. Section V
concludes. The proofs are gathered together in the Appendix

[l A COMPETITIVE MARKET MODEL WITH LEARNING FROM CURRENT
PRICES

2.1 The model

The model that builds the framework of our analysis is a sempbdel of a competitive market
under asymmetric information. In this market, the pricensraits information, that is: firms
are able to use the information revealed by the current nhariee for their current decisions.
This is the kind of models analyzed especially in the soecbREE literature (starting with
Grossman (1976) and Grossman and Stiglitz (1980)). Pigcitee model is a static version of
the one in Vives (1993j.

There is a continuum of risk neutral firmslin= [0, 1] supplying the same commodity. The
inverse demand function for the commodity is known to the girm

p:B—(—1pX+s. (1)

Here, p is the market priceX is the aggregate demangl,is a normally distributed de-
mand shock with zero mean and precisnf} > 0 and@ > 0 are known constants (whike

3In fact, as demonstrated by Vives (1993), it is possible state the present model such that it can be inter-
preted as a financial market model where agents are buyensasisat with unknown ex—post return. Our stability
results of Section 3 hold in a CARA/Gaussian model (compartatavailable from authors upon request).



is unknown to the firms). Every firm faces increasing margougts that are affected by the
paramete®: firm i’'s production costs ar@x(i) + ﬁx(i)z, where > 0 andx(i) is the output

of firm i. The cost parametdr is unknown to the firms (this may be a productivity shock, a
long term pollution effect or any element unknown at the timere the production decision is
made). The firms, however, know that this parameter is draam &« normal distribution with
zero mean and precisian Notice that the paramet8ris common to all the firms.

Private information on the side of the firms regarding thenaown paramete® is intro-
duced into the model by allowing for endogenous acquisionformation. It is assumed that
each firm is able to perform an experiment (independent fropements of other firms) that
reveals additional but costly information regardifig Formally, it is assumed that each firm
i € 1 can acquire a costly private signsi) = 6+ u(i) where the noise(i) is normally dis-
tributed with mean zero and precisiofi),. The cost of acquiring a signal with precisiofi)
is K(t(i)y). We assumeK’ > 0,K” > 0 andK (0) = 0 (t(i)y = O corresponds to no acquisition
of information).

The objective of a firm is to maximize the expected profit wherddit 1(i) of firm i is:

(i) = [p— O] x(i) — 5 — [X())* ~K(t(i)u), @)

We assume that a strong law of large numbers holds, and We:%]im(i)di = 0 almost
surely. It follows thatfol s(i)di = 0 almost surely, that is: the average of the firm’s private
signals reveals the value of the unknown parameter.

2.2 Linear rational expectations equilibrium

The timing of the model is as follows: each firm decides theigien of the private informa-
tion it will acquire, observes its private signal and sulsnaitsupply schedule to an auctioneer.
The auctioneer collects the individual supply schedulessats the market clearing price. We
assume the following restriction of firms’ behavior:

Assumption 1 Each firm’s supply schedule is an affine function of its pevagnal i) and the
market price p.

We write: x(i) = W[(1 —y(i)2) p— ¥(i)o — Y(i)15(i)] where the weights/(i)o, y(i)1 and
y(i)2 are real numbers for alle I. As a profit maximizing firm supplies a quantikyi) =
WY(p—E(8|p,s(i))), we have:

E (8]p,s(i)) = y(i)o+(i)as(i) + y(i)2p. 3)



The linearity ofx(i) is equivalent to the linearity of the conditional me&a®|p,s(i)). Equa-
tion 3 holds true for example when the joint distributi@) p,s(i)) is normal. We show below
that Assumption 1 implies that the joint distributit® p, s(i)) is normal. Hence, Assumption 1
is equivalent to normality of the joint distributid®, p,s(i)). This linearity assumption is usual
and well known, and we will not motivate it further. It simipis the analysis considerably, as
the decision of firm is characterized by four real parametéy@)o, y(i)1,Y(i)2,T(i)u) only.

We now compute the market clearing price and define the équitn. Letyg = fol y(j)od],
y1=f3 y(i)1djandy, = f5 y(j)2d].* Aggregate supply is defined &s:

[ xidi=wia - —vo - ), @

so that aggregate behavior is summarized by the coefficightg andy,. Combining
equations (1) and (4) shows that the market clearing prigaiguely defined as

_Btayo+ayib+e (5)

1+a(l-vy)
wherea = @/@. As announced, the joint distributidf, p,s(i)) is normal. The conditional
meankE (6|p,s(i)) can be computed using Equation (5) and is linegpirs(i)). Assumption 1

is self-fulfilling: when every firm expects the conditionatamE (8|p,s(i)) (or the supply) to
be linear, the actual conditional mean (or the actual sypelsulting from firms’ behavior is
indeed linear.

A linear Rational Expectations Equilibrium (REE hereaftesrjhen defined, quite as usual,
as an outcome where the beliefs of every firm are self-fulfllithat is:

— every firm submits a linear individual supply charactedibg (y(i)o, y(i)1,Y(i)2) and all
these parameters satisfy Equations (3) andEgP(p, s(i)) is computed using Equation

(5)),

— for every firm, the optimat,(i) is derived from the maximization of the profit.

A REE is a static equilibrium concept where the proeansmits information abo@(some
information can be transmitted because firms are able totwomtheir supply decisions op).
A shorter definition of REE is given in the next section, attee best response mapping is
defined.

4All the measurability assumptions required are made. Itiqudar, we assume thdt)l v(i)od], fol y(j)1d]j

and [ y(j)2d] exist.
5This definition of aggregate supply is discussed in the Agpen




Our first result establishes that there exists a uniquediR&E°

Proposition 1 Leta = /@ > 0. There exists a unique linear REE where every firm uses arlinea
supply function &) = W[(1—v;) p— Y — YiS(i)] and acquires the same level of precisign
with the following properties:

(i) IfK'(0) > 5%, thent;; = 0.

(i) fK'(0) < % thent;, > 0 andt;, is the unique solution of the equation:

2K'(t) [ 2K/ (T
qET”){ LﬁT”)TﬁzazteJﬂHﬁ =1, (6)

(i) The coefficientsy, y; andy; are given by:

yko - _ BaViTe
T4+ T+ 02y T+ 02yt
[2K'(T})
Y:T. = Tlik.l LIJ > )
v = yia(l+a)te .
T+ T+ 02yi% T + a2YiTe

Proof. See Appendix. [J

In this kind of model, existence of a unique linear REE is d&dinp unsurprising. A REE
where the firms acquire a positive amount of private inforamaexists, as conditions (i) and
(i) make clear, only if marginal costs of information acsjtion at zero (i.eK’(0)), fall short
of respective marginal returns of information acquisitiarhich are at zero equal /212,
Since we are interested in equilibria where the current etapkice aggregates and reveals
dispersed private information, we confine the followinglgsia to the case where the condition
K’(0) < g/212 is satisfied such that a REE witf) > 0 exists.

A usual question is whether there exist nonlinear equdiliésides this unique linear equilibrium. At least
when supply schedules are restricted in an appropriate wely that they have bounded means and bounded
variances, this is not the case. Vives (1993) provides afmftthis for a generic stage of this dynamic model that
can easily be adapted to our model.



2.3 Informativeness of prices

The aggregation of information through the market pricdlisirated in Equation (5) stating
thatp is a noisy observation of the unknownSimple computations shows that the conditional
precisiontg is T+ T, wherety, is:’

T = o?y; T (7)
Thanks to the normality assumptiar}, does not depend op. Thus,Tj, can be regarded as
a measure of the precision of the information revealed byrtaeket price. In what follows, we
call T, the informativeness of the price.
According to (7), informativeness of the price increaseths endogenously determined
weighty; which is given to private information in the firms’ decisiortgom Proposition 1 we
get thaty; is an increasing function of the — also endogenously detesthi— precision of the

*
a;

private signalg;,. Hence,dra > 0.

Two other (useful) properties af, are that% <0 andg%’ > 0. The first property(g—f <0
comes from the fact that an increase in the precision of pyalpriori) informationt about
0 decreases the private information precisigi¥ Concerning the second property, the sign of
3%’ IS a priori ambiguous becausg (andy{z) is decreasing in the precisiagp of the noise in
market deman@. In our model (as in Verrecchia (1982)), the positive dirdtga of ¢ on Tp
offsets the indirect negative effect vigandy; onty. The fact thalﬂ% <0 andg%i’ > 0 forms
the basis of the famous Grossman-Stiglitz—Paradox (cfs€bnan and Stiglitz (1980)) which
we will discuss later in more detail: A increases, prices become more informatiegeris
paribussuch that incentives for private accumulation of inforroatare reduced.

[l STRONGLY RATIONAL EXPECTATIONS EQUILIBRIA

3.1 Description of the concept

Since detailed descriptions of of the concept of a strondifE RSREE hereafter) are already
available (see Guesnerie (2002) for a synthetical assedssvhéhis literature), it is adequate
to limit the present analysis to a pragmatic treatment & toincept and the game—theoretical
issues that are involved here. The fundamental questiatiassd with the concept of a SREE

19, = 1/Var(8| p). The computations are in the Appendix.

8% < 0 follows from differentiating Equation (6).
901,

F obtains from differentiating Equation (6) a%g‘g follows from differentiating Equation (7).



is, how agents in a model end up in a REE, assuming nothing tharecommon knowledge
(CK hereatfter) of the model’s structure and individualoatlity. Usually, these two hypotheses
are not sufficient to predict a unique outcome. While the $eiubcomes predicted by the
two hypotheses of CK of individual rationality and modeé(ia set of rationalizable solutions
defined below) includes the REE, it typically includes otbetcomes as well. Still, under
some conditions, the REE is the unique outcome compatilite @K of individual rationality
and model. In this case, following Guesnerie (2002), we ttedl REEeductively stableor

a strongly rational expectations equilibriumThe REE can then be justified as result of an
eductive process or mental process of reasoning (thatisspection) on the side of the agents
in a model. In this sense, it is not subject to problems of etgi®nal coordination.

We consider here local eductive stability, that is: we adith&oCK of rationality and model
the CK that firms’ supply is in a neighborhood of the REE. In &mel, local eductive stabil-
ity, or existence of a locally SREE, means that CK that firmsose supply schedules in a
neighborhood of the REE implies that firms exactly chooseREE supply schedules.

A formal description of the stability concept relies on tlacept of rationalizable solutions,
obtained through a process of iterated elimination of nost besponses. The definition of
rationalizable solutions requires to consider the modstdeed in the previous section as a
(normal form) game among the firms where the strategy of a fonsists of the parameters
(Y(i)o,Y(i)1,Y(i)2,T(i)y). It follows that a Nash equilibrium of this game is a linearlREnd
the best response mapping is as summarized in the followengnha:

Lemmal Letyo= [y y(j)odj,ya=fg y(j)1d]jandy. = [5 y(j)2d]. Aggregate supply is then

1
| XD = w{(1-y)p—vo— i8]

so that aggregate behavior is summarized by the coefficigntg and y,.. Then, the best

response of a firmd | to others’ strategies, summarized by the aggregate supplyi, Y2), is

characterized by the coefficientg(i),yi(i),y2(i), tu(i)) defined by:

o anTe(B+ayo)
Yo = T+Tu(i) + 0221 (8)

Tu(i)

i 9
V(i) T+Tu(i) + 0221 ®)

. V1o (14+a(1—yo))Te
10
y(i)2 Y. (10)

wherety(i) = 0if K'(0) > ZHTLUVZT)Z andty(i) is the unique solution of
1Te
1 .

Y K/ (x(i)). an)

2 [T+ 1(i)u+ a2yt

10



otherwise.

Proof. See Appendix. [

Notice that the best responseiadoes not depend on others’ information precisiop),.
This comes from the fact thés best response depends on the aggregate supply only.

Let z(i) = 7 (z) denote the best response mapping. That is, the best respioa$iemi € |
to an aggregate behavibe (Yo, Y1,Y2,Tu) is z(i) = 7 (z) wherez(i) = (y(i)o, Y(i)1,Y(1)2,T(i)u)
denotes the strategy of a single fiidf Clearly, the REEZ* = (Yo, Y1, Y5, T} is the fixed point
of this best response mapping, zé= 7 (z").

As we consider local stability only, we restrict attentionstrategies in a neighborhood of
the REE:

Assumption 2 For all i € 1, firm i's strategy Zi) is in a set W ¢ R x R,. Furthermore, W
contains the REE, i.efz Wp.

Starting from this assumption, the eductive process puacas follows:

— Step 1.Since Assumption 2 is CK, every firm knows that the resultiggragate supply
is in the convex hullwy = conWp) of Wp and it plays accordingly a best response to
an element inwg (firm i's beliefs on aggregate supply are point beliefs, see thanem
below). Define\y =WoN T (wp). The strategies ik are the best responsesWy to
aggregate behavior im/g.

— Step 2.Since Step 1 is known to the firms, every firm knows that theeggfe supply is
in the setw; = conyW,). DefineW, =Wy N7 (w1). The strategies ik, are the best
responses ik, to aggregate behavior in/.

— Every further step is analogous: we define iteratively aebsing sequence of s&:
Wn - anl nT (‘anl)y

wherew,,_1 = conyW,_1). At Stepn, every firm knows that the aggregate supply is in
Wnh—1 and it therefore plays a best response to an element,in,.

Because the sequendg is decreasing, it converges to a limit $&t = N,W,. We say that
the REE islocally eductively stabler alocally strongly REE (LSREByhenever there exists
a setWp such that\,, reduces to one element (this element is necessarily the . REE9n the

10We writet, = fol 1(j)ud]. 7 is constant with respect . Consideration of, as an element afserves only
notational purposes.

11



REE is a LSREE, the CK assumptions imply that every firm exgpaggregate behavior to be
Z" and, therefore, reacts playing the equilibrium stratggy

A remark on the set W The definition ofW,, relies on point beliefs on aggregate supply and
not stochastic beliefs (at step beliefs are inwy_1, not in A(wh_1)). A formal argument
relying on a law of large numbers could certainly include edbstrategies along the following
lines: A mixed strategy of a firm is an element®dfWp), a profile of (non correlated) mixed
strategies is then an elementébq\/vo)[qll. Because the individual supplies are non correlated,
the aggregate supply resulting from a profile of mixed styiateis deterministic: itis an element
of wo. Therefore\, is exactly the set of rationalizable solutidh®f the game where every
strategy set is restricted Y.

3.2 Conditions for existence of a locally SREE

The next Proposition states the conditions under which tBE R a LSREE.

Proposition 2 Letn denote the elasticity of marginal costs of information dsdion with re-
spect tary (i.e.n(ty) = K”(ty)tu/K’'(1y)). The REE is a LSREE if and only if

T, < T, (C.

o _ (N2 n
T, <T, <H*+4) +1 (ﬂ*+4)’ (C.IH

wheret, is given by(7) andn* denotes elasticity of marginal costs at the REE.

Proof. See Appendix. [

The proof of this Proposition consists of an analysis of §reasnics ofr aroundz*. Indeed,
it is straightforward from the above discussion that the REBcally strongly rational iff the
map7 is contracting az*.1?

The stability conditions are stated in a form which makeslieixghe importance of the
informativeness of the equilibrium market price for stipil Both conditions imply thatry,
must be bounded from above in a certain way in order for a LSEREKist.

Condition (C.I) says that the price must be less informatinan any private signal. This
condition is exactly the necessary and sufficient conditlerived by Heinemann (2004) for
existence of LSREE in the same model with exogenously givemte information precision
T, In fact, Condition (C.I) is the condition for local stalyliof the best response dynamics

1These are non correlated rationalizable solutions, & lafgem (1984) and Pearce (1984).
12see Desgranges (1999) for a explicit proof of this techribaracterization of local eductive stability.
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associated with equations (8) — (10) only, that is when tleeipion of private information is
exogenously fixed ta;;. Moreover, condition (C.1) is identical to the conditiondbtained in
a CARA/Gaussian model in Desgranges (1999). It confirmsalssult by Desgranges et al.
(2003) obtained within the context of a model with privat®mmation but only a finite number
of states and signals (they also conclude that the coordimat expectations becomes difficult,
if the price becomes too informative).

Condition (C.II) is therefore the additional condition ioged by endogeneity of private
information precision. Indeed, the upper boundtgrprovided by Condition (C.1I) relies on
the elasticity of the costs of information acquisition. &®nce of Condition (C.II) suggests
that endogenous acquisition of information might lead torgjer conditions for existence of a
LSREE. Before we answer this question, we explain why stgbéquires a low value of,.

3.3 Why should} be low?

In general, instability of the REE (that is: instability die dynamics of the best response
mappingZ aroundz‘) means that the individual firm’s reaction turns out to bedensitive to
others’ decisions. In the case under consideration, a nre@se intuition is as follows. If the
informativeness of the price is high, then it is quite impaittfor the firms to extract information
regarding the unknowf from the price. Hence, supply is very sensitive to the firmedidds
about the information contained in the price. Thus, theaatorrelation between the price
and@ is very sensitive to the firms’ beliefs as well. Given that wawvér not assumed CK of
beliefs, this in turn makes it hard to assess the informatimmtained in the price. Without
further assumptions that go beyond that of CK, it can haréyekpected that firms are able
to coordinate their expectations in any definite way. If, ba bther hand, the price is not
very informative, it is not quite important for the individufirm to extract information from
the price and to anticipate correctly other firms’ beliefsl @ecisions. Every firm acts nearly
autonomous, with decisions based almost exclusively omatarisignals and hardly on beliefs.
In this case, the REE is likely to be strongly rational. Sumgniip, the underlying problem is
identical to the well known problem of 'forecasting the foasts of others’ that is described by
Keynes (1936) in his famous 'beauty contest’ example.

3.4 Stronger conditions with endogenous private infororaprecision

Endogeneity of information precision makes existence oS®EE more requiring whenever
Condition (C.II) implies Condition (C.1). Some algebra sisothat this is the case if and only
if:

13



2 ES
n" < % (12)

According to this inequality, the cost function of inforrmat acquisition is relevant for sta-
bility. Precisely, Condition (C.II) is stronger than Cotidn (C.I), if the elasticity of marginal
costs of information acquisition® at the REE falls short of a certain, also endogenously de-
termined upper bound. As Condition (12) contains endogenauables, its interpretation is
delicate. Still, this inequality mainly confirms the aboween intuitive reason for coordination
problems. If prices are very informative, it is important &very firm to figure out what other
firms believe and do in order to extract valuable informafrom prices. In case of endogenous
information, a firm’s reaction to a highly informative prigenot only to learn excessively from
the price but also to acquire less private information. Wipeis low, it is not very costly to ad-
justty(i) for firm i. Thereforegy(i) is very sensitive to firni's beliefs about the informational
content of the price. This makeg(i) difficult to predict by every other firm and the REE can
not be a LSREE.

The next Proposition summarizes our results regardingenas of LSREE and again high-
lights the role of the informativeness of the market pricéhis respect:

Proposition 3
. ) o . . . . . .
@ If n*> % a LSREE exists if and only if conditi¢@.1) is satisfied.

(i) If n* < @ a LSREE exists if and only if conditi¢@.l) is satisfied.t, < 1 is still a
necessary condition, while a sufficient condition for exqise of a LSREE rq; < %Tu.

Proof. See Appendix. [

3.5 Constant marginal costs

One special case is the case of constant marginal costsooafion acquisitiofk’ (or, equiv-
alently, n(ty) = 0).23 In such a case, the condition (12) always holds such thatesxie of
a LSREE is equivalent to Condition (C.II). Some computatishow that Condition (C.II)
reduces tap, < %Tij (i.e. the precision of prices must be lower than half the isren of the pri-
vate signals). Thus, in case of constant marginal costggameity of information acquisition
definitely results in stronger conditions for existence b&REE.

BFor instance, marginal costs are constant, if the privageadss(i) are outcomes of individual sampling pro-
cesses where firms make observations of the unkrbplns some noise term with zero mean and constant vari-
ance. If costs per observation are constant, marginal obstformation acquisition will be constant too.
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Furthermore, we are able to address in this special caseugstign of global stability of
the eductive process and to describe the set of ration&izaformation precisions. To define
global stability, we restrict attention to the s¥s with Wo = W x R, whereW is a compact
set inR?3 (recall thatW, depends ohi\p).14 We say that the REE iglobally stableor astrongly
rational expectations equilibrium (SREE)for every initial setWp, the seW,, reduces to one
element. This element is necessarily the REE.

The following Lemma is a first step in the analysis of globabdity. It shows that, when
marginal costs are constant, the best response mapping€sema 1) simplifies so that the
best response dynamics®fis independent from the other variablgs, y1,Y2).

Lemma 2 Consider the case with constant marginal costs and denet ‘ﬁ, . Assume @1
(so thatt}, > 0). Consider a profile of firms’ strategié§o(j),y1(j),Y2(i),Tu(})) in T (Wp).1°
Denotet, = fol'[u(j)dj the average precision of information. Then, the inforim@precision
of the best response to this profile of strategies is:

ot ,
T(ty) =maxq 0,Q—1— FTu : (13)
Proof. See Appendix. [J
This Lemma suggests that the Saif rationalizable information precisions coincides with
the limit set of the best response dynamics for the endogdynaecquired amount of private

information associated with (13) (i.e. the lini°(R..) of the sequence of sefs'(R.)). The
following Proposition 4 states this result and descries

Proposition 4 Consider the case with constant marginal costs of inforamaticquisition. As-
sume Q> 1 (so thatt}, > 0). The sequence of set§(R, ) is decreasing and converges to a limit
denoted T°(R..). This limit set T°(R_.) is the set S of rationalizable information precisions.

@ IfQ—-1< %a?—l then S={t1};}, i.e.T}, is the unique and globally stable fixed point of the
mapping T.

(b) Otherwise, one of the following two cases applies:

14This restriction of compaddj is necessary for the definition of stability to make sens&Jjlfs not compact
(for exampleW; = R3), then the set of rationalizable outcomes is not compaeteiit is unbounded and no REE
can never be globally stable. Due to the properties of theahadder consideration, this requirement does not

apply to thery(i)-axis: ty(i) is not restricted to a compact set.
5That is: every firm’s strategy is a best response to some beiiefs inWp. This assumption simply means

that every firm is rational (as shown in the proof, this implikaty(i)1 = 1u(i)/Q).
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(b.1) If S <Q-1< —2—, then S= [t,, Tu], wheret , T}, andT,, are the 3 fixed points
of T2 (Iu andTu satisfy0 < 1, < T, < Ty < Q—1).

(b.2) fQ—1> 5 thenS:T(R+) 0,Q—T1].

The proof of the Proposition consists of two parts: we firshpate the seT*(R..), and
we then show that every precision in this set is the precigf@rationalizable strategy.

The cond|t|0n40((2g < Q-1 is exactly the stability conditiomy, < %T{j. Thus, Casda)
states that;, is the unique rationalizable precision when the REE is a LIEREhe remaining
two casegb.1) and(b.2) characterize the set of rationalizable precisions wherRE&E is not
stable. Notice that, in cag.1), the CK assumptions are not sufficient to predict the REE as
the unique rationalizable outcome, but these assumptidhiead to some restrictions on the
set of rationalizable precisions of private information.

A natural extension of Proposition 4 would be to describestteof rationalizable outcomes
(Yo,Y1,Y2,Tu). We are unfortunately unable to provide a full descriptiérihis set. Still, we
make the two following points:

2 . . . .
— Inthe cas® — 1 < %OS—T& the corollary below shows that there is a unique ratioaaliz
outcome.

— Inthe caséog—i£ < Q—T, the proof of Pointgb.1) and(b.2) in Proposition 4 exhibit a set
of rationalizable outcomes. This is the set of outcomes #uatyy € [VO,\_/O] Y1 =Tu/Q,
Yo € [\72,\_/2} andty € [1,,Tul, where(yo,\_/l,\_/z,lu> and (Yg, Y1, Y2, Tu) is the cycle of the
best response map (this cycle is shown to exist and to be unique). In simple \sptide
outcomes "within the cycle" are rationalizable.

The next corollary states that, whenever the REE is loc#dligle, it is globally stable:

Corollary 1 Consider the case with constant marginal costs of inforamadicquisition. A nec-
essary and sufficient condition for existence of a SREE is 315 This condition rewrites in
terms of exogenous variables:

3 2
40((22 >Q-T1. (24)
Proof. See Appendix. [J

If %E?% > Q—T1, the REE is the unique rationalizable outcome, whateveséidy is, that

is: the REE is globally stable. ﬁ% < Q-T1, then the REE is not stable (it is not even locally
€
stable) and there are many rationalizable outcomes.
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We now illustrate the three cases in Proposition 4 and thpepties of the best response
mapping (13) with three examples, bearing in mind that theraye information precision,
is necessarily non—negative and tiiat 1 represents the maximum precision ever acquired
(i.e.Q—1=sup, o T(Tu)). Thus, we can restrict the analysisiofo the se (R) = [0,Q—T]
without loss of generality.

Example 1 (illustrating case (a))n case (a), a LSREE exists both when the amount of private
information is exogenously given and equalpand when it is endogenous (the two stability

conditionsty,
acquisition is endogenously determined does not destatifie REE.

<Thandty < %Tij are both satisfied). Thus, in this case, the fact that inféona

Consider a numerically specified version of the model wiete —0.85, y = 1,1 =0.1,
T = 1 andK’ = 0.5. From equation (9) and (11), equilibrium values can be adet as:
y; =0.621, 1j; = 0.621 andty, = 0.279. Figure 1 shows how the functidnlooks like. The
eductive process proceeds similarly to the well known cdiwignamics® The first step of
the process is to consider thgt> 0 is common knowledge. Given th@itis decreasing, this
fact implies that the maximum amount of private informatadirm will ever acquire is given by
T(0) =Q—1> 0. SinceT and rationality are common knowledge, it is therefore atsmmon
knowledge that, < T (0). A further step of the process shows then that no firm will eheose
T()y < T(T(0)) = T(Q—T1). Thus, this second step restricts the set of possible jwacie
[T(T(0)),T(0)]. As indicated in the figure, the dynamics that result if thisdkof reasoning
is iterated converges to the REE precisijnbecause the condition stated in Proposition 3 is
satisfied): each firm can educe that only the precision REE 0.621 constitutes a possible
solution under the assumptions of common knowledge of iddal rationality and model.

Example 2 (illustrating case (b.1)The precision of the noise is now = 1.3, which is larger
than in example 1. From equations (9) and (11), equilibri@tues can be computed gs=
0.582,1;; = 0.582 andr, = 0.318. We have theéTﬁ < Tp < T, ALSREE exists if the amount
1,, of private information is exogenously given, but does nattgkinformation is endogenously
acquired.

On figure 2, we have now also plotted the functioand the second iterate of this function
T?(ty) = T(T(1y)). As can be seen, this function possesses two additionalfisieds, denoted
T, andTy. Notice too that the associated 2—cycle is stable. If weakfe argumentation used
in the discussion of the first example, we therefore get aga®evhich converges to this 2—
cycle: the first step of the process shows thak T(0) = Q—1, a second step shows that
> T(Q—1) = T?(0). Clearly, iterating this argument eliminates the precisioutside the

16This description of the process originates in GuesnerieZ19
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Figure 1: Best response mappind ) for example 1 (case (a))
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Figure 2: Best response mappind ;) for example 2 (case (b.1))
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interval [t,,,Ty], but not precisions it ,,Ty]. It follows that all precisions in the sét ,, T,
constitute possible solutions under individual ratiotyedind common knowledge.

Example 3 (illustrating case (b.2)J:he precision of noise i = 2.0 and, hence, larger than in
examples 1 and 2. At the REE; = 0.512 andrt}, = 0.384. The REE is still strongly rational,
if information precisiort;, is assumed to be exogenously given, but not (sitjj¢g@ = 0.258),
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Figure 3: Best response mappind,) for example 3 (case (b.2))
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when information acquisition is endogenous. The best respéunctionl depicted in figure 3
reveals that in this example we haVéQ — 1) = 0, i.e. the non-negativity constraint af{i)y
becomes relevant.

Again, we repeat the argumentation used in the discussithre@bove examples. However,
the process here immediately converges to the whole intg\@— t]. Indeed, the first step of
the process still shows tha < T(0) = Q—rt. If, however, each firm acquires this maximum
amountT (0) of private information such that, = T(0), there is so much information in the
market, that it is individually optimal to stop the acquiisit of information, i.eT(Q—1) =0.

In other words, the second step of the process showstbal (Q—1) = 0. Thus, no additional
restriction is created by this second step. Clearly, itegethis argument does not eliminate any
precision: all the precisions 0, Q— 1] constitute possible solutions under individual ratiotyali
and common knowledge.

IV APPLICATIONS

In this final section, we provide three applications of thevasus stability results. We first show
that the requirement of existence of a LSREE creates an ujgperd on the informativeness
of the price, that is reminiscent of the mechanism of thelwaled Grossman-Stiglitz paradox.
Then, we discuss how the precision of public (a priori) imationt and the level of marginal
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costs of information acquisitiold’ affect the existence of a LSREE.

4.1 SREE and the Grossman-Stiglitz paradox

The well known Grossman-Stiglitz paradox on the impossybdf informationally efficient
markets states that a REE with endogenous acquisition ofrivdtion and a fully informative
market price cannot exist simultaneously. In such a caséymowould have an incentive to
acquire costly the information the price reveals anywayemine price cannot be informative
if no firm acquires any information.

In our model, as in quite many models, the presence of exagenoises prevents the
price from being fully informative regarding the unknown Still, the mechanism at work in
the Grossman-Stiglitz paradox still holds, as previousdyesl in Section 2: when the precision
T¢ of the noise increases, informativeness of the REE pricee@ses; this in turn destroys
individual incentives to acquire private informatiorj ecreases). As a consequence, when
varies between 0 angleo, informativeness of prices in a REE is bounded from abovehén
next Proposition, we compute this upper bound and we shothigupper bound is much
smaller when we restrict attention to LSREE.

Proposition 5 Assume K0) < E‘l’z (so thatt}, > O for everytg).’ Denotety® = sup,_,, T; the
upper bound of the informativeness of the market pricetdt->R=F= supy__ e Ree is a LSREED
the upper bound of, whent, is such that the REE is a LSREE. We have:

e = lfJ —T,
2K’(0)
1
maxLSREE max
Tp < ETD

Furthermore, when marginal costs of information acquisiti’ are constanty2*-SREE—
1.:max
3lp -

Proof. See Appendix. [

The proof (that relies on algebraic computations) is in tpeéndix. Notice that'® = -
iff K'(0) =0.

In order for a LSREE to exist, informativeness of prices ltabd lower than at least one
half of the upper bound® (and exactly one third in the case of constant marginal xoats
in all this means that while existence of a REE implies restms on the informativeness of
the equilibrium price, the justification of such an equilitbon by means of an eductive learning
process leads to even stronger restrictions.

f K’ (0) > @/ 212, thent;; = T, = O for everyte andty®*= 0.
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Figure 4: The set of rationalizable strategies £ 0.98, K’ = 0.5, y = 1.0 andt = 0.1).
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Figure 4 illustrates the above result and the implicatidnBroposition 4. Based on a nu-
merical specification of the model, the figure shows the RE€ipion of private information
T, (the solid line) and the REE informativeness of the marketepr,, (the dashed line) both
dependent on the precision of the notge The precision of private informatiorj, decreases
from its maximal valueQ — 1 towards zero as, approaches infinity, while}, increases from
zero towardsr?,‘ax: Q — 1. In addition, the figure shows the sebf rationalizable precisions

of private informatiorty as stated in Proposition 4 dependent on the precision ofdiset.

2

As long astg < %ﬁ a SREE exists and the REE precision is the unique raticaidéz

precision. Iftg > %ﬁ:} no SREE exists. The shaded area in the figure then repredents

precisions that are rationalizable in this case. When tleeigion of prices is not too large,
. QZ

€. Te < 25 :
the set of rationalizable precisions. When the price besaio@ informative, i.ete > ﬁ
case (b.2) of Proposition 4 arises and all the precisiongpediivie with individual rationality

, case (b.1) of Proposition 4 arises, the common knowledggnagtions restrict

(i.e. the sef0,Q—1]) are rationalizable. All in all, the figure illustrates thaformativeness
of REE prices must be below a well defined upper bound in omlget rid of coordination
problems.
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Figure 5: Eductive stability and marginal costs of information acgtion (@ = 0.98, 1 = 0.4,
Y=10andt=0.1)
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4.2 Costs of information acquisition

In the case where marginal costs of information acquisikémre constant, we compute the
values ofK’ for which a SREE exists.

Proposition 6 Consider the case with constant marginal costs Kssume that K< %z (so
thattj, > 0).

() If o?1e < 31, a SREE exists for all levels of marginal costs K

(i) Otherwise,a?t: > 31 and there exist upper and lower bound and K/, respectively)
on marginal costs given by

i oy
8 <G2T5+ V02T [02Te — 3T]) ,
K/ — 9l'|J

8 (azrs— V02Te [G2T5—3T]) ,
such that a SREE exists whenevérKK’ or K/ > K.

Proof. See Appendix. [J

Point (i) is the striking part of the result concerning the role plapgK’: the set ofK’
compatible with existence of a SREE is not convex, both saradl large values ok’ imply
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existence of a SREE. This non-monotonic effeckébn existence of a SREE is analogous to
the non-monotonic effect af, exhibited in Desgranges (1999) in a financial market modal a |
Grossman (1976) (where the private information precisgogiven). Indeed, in our modet,,

is monotonic (and decreasing) ki and the intuition for the result follows from two facts,

is increasing but not linear i}, and stability obtains wherty, < 1;;,/2 (as stated in Corollary 1).
The effect of a change i’ on the condition for stability is then ambiguous. For examph
increase irt;, (due to a decrease K/) favors stability while the simultaneous increase jns
detrimental to stability. Because of the non-linearitypfn tj, the resulting effect of a change
in K’ can either favor stability or not.

The fact that a SREE exists for low valuestgfis easily understood since a layy means
that there is not much to be learned from the price such tleaaliove described coordination
problem doesn’t show up. On the other hand, whgrs high, the price is highly informative,
but it is less informative than private signals such thas not important for the firms to learn
from the price'®

Figure 5 illustrates this result. Based on a numerical $jgation of the model, the figure
shows the equilibrium precision of private informatigi(the solid line) and the equilibrium
informativeness of the market pricg (the dashed line) both dependent on the level of marginal
costs of information acquisitio’. Note, that there is an upper boupd2t? = 50 on this level
of marginal costs becausg = 0 above this upper bound. The shaded area in the figure again
represents the set of rationalizable precisions of privdtemation according to Proposition 4.
As can be seen, existence of a SREE is favored by low or highingrcosts of information
acquisitionK’.

4.3 Public (a priori) information
Let us now turn to the comparative—statics with respect éoptecision of public (a priori)

informationt. The effect of this parameter on existence of a SREE turnsodug monotonic.

Proposition 7 Assume that the elasticity of information acquisition sgst 1 K" (ty) /K’ (Ty)
is constant. There exists a leweb 0 of the precision of a priori information such that a SREE

. . — . . — 2
exists ifft > 1. In the case with constant marginal costs=€ 0), T = max(O,Q— %G‘ET£> :

Proof. See Appendix. [

Depending on the other parameters of the model, the crigeal of the precision of public
informationt may well be 0 such that a SREE exists forait 0.

8In particular, wherk'’ tends to 0,1;; is not bounded while}, is bounded from above by?t: (1}, can be
explicitly computed from Equations (6) and (7)).
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Figure 6: Eductive stability and precision of public informatiom £ 0.98, 1 = 1, y =1 and
K’ =0.5)
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Three comments are in order. First, this proposition dogéstnaightforwardly follow from
previous results. Indeed, wherincreasest;, decreases. As; is increasing in, the effect
of an increase of on the stability condition (C.I}, < 1j; is ambiguous: the decrease wf
favors stability while the decrease tf is bad for stability. The same ambiguity holds for the
other stability condition (C.1I). Thus, the above propmsitshows that the positive effect of an
increase it is always the dominant one. Second, improvinglways favors stability. Thus,
under the presumption that the aim of public policy is to prevexpectational coordination
difficulties, acquisition and dissemination of informatiby the government is always helpful
in this respect. Third, the present model contains two ssuot public information: the prior
probability distribution off (that is exogenous public information) and the price (tlsaam
endogenous public signal). Our results stress a differénm@ the viewpoint of coordination)
between endogenous and exogenous public information. meguivocally say that too much
public information in form of the market price generateseaxtptional coordination difficulties,
while public information in form of a priori knowledge tenttsattenuate such difficulties.

Figure 6, which is again based on a numerical specificatiotm@imodel, illustrates this
result for the case of a positive critical leviel The figure shows the equilibrium precision of
private informatiort;, (the solid line) and the equilibrium informativeness of tharket pricer,
(the dashed line) both dependent on the level of the precafipublic (a priori) informatiort.
Note thatt is bounded from above b9 = /(2K’) = 1 because otherwisg = 0. The shaded
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area in the figure again represents the set of rationalizaigleisions of private information
according to Proposition 4. As can be seen, existence of &3&tavored by a high precision
of public informationt.

V CONCLUSIONS

In the present paper, we have shown how known results fotegxis of SREE must be mod-
ified, if endogenously acquired private information is ddesed. Generally, endogeneity of
acquisition of information leads to stronger conditionsdristence of a SREE. In particular, it
was shown that it is necessary, but not always sufficientREeE prices to be less informative
than private signals for a SREE to exist. In case of a religtisv elasticity of the marginal
costs function associated with the acquisition of infolioratvith respect to the informativeness
of that information, this is not sufficient for existence c8REE. For example, in the limiting
(and special) case of constant marginal costs and zeracélgsnformativeness of the price
must be lower than one half the informativeness of the pigagnals.

Given that the conditions for existence of a SREE take thm foirrestrictions on informa-
tiveness of the market price, it is quite natural to look fdm& between our results and the
well known Grossman-Stiglitz paradox of the impossibibfyinformationally efficient mar-
kets. While the Grossman-Stiglitz paradox is concernetl wié question of existence of a
REE, our paper is concerned with the justification of an egsREE via eductive learning,
that is based on the assumptions of individual rationahty eemmon knowledge. If we regard
the absence of possible expectational coordination diffesuas an important constraint to be
respected, our results supplement the Grossman—Stigliggpx as follows: It is not only that
mere existence of a REE necessitate a certain amount omatamnal inefficiency, but also the
justification of such an REE based on individual rationadibhd common knowledge necessi-
tates a specific amount of informational inefficiency. Farthore, the amount of informational
inefficiency required in order to avoid expectational caation difficulties is generally greater
than that required for existence of a REE.

Two comparative statics results are surprising. Firsts#éteof values of the marginal costs
of information acquisition that are compatible with a SREEot convex: both low and high
values sustain a SREE, while intermediate values do notyalw@econd, the influence of the
public prior information on stability is positive, this i®tivery surprising in itself, but this is in
contrast with the fact that the information that is publicdyealed by the price has a negative
influence on stability.
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Future work on this subject will analyze the case of incregsnarginal costs of information
acquisition in more detail in order to check the robustnégheresults obtained for the case
of constant marginal costs. Moreover, it should be analyzkdther the results carry over
to financial market models with learning from current priedgere risk aversion of traders is
allowed for.
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APPENDIX

Definition of aggregate supply. Given that every(i) is a function of(s(i), p), aggregate supply is
priori a function ofp and all the private signagi) (and not only a function & andp): aggregate supply
may vary from one statés(i )) co 10 another corresponding to the safhébecause of heterogeneous

x(i)). Aggregate supply may depend on the individual preus(cme))le[o’l] as well. A convenient
way to avoid this difficulty is to assume that the heteroggmedi the x(i) is not correlated with ths(i).
Formally, aggregate supply is defined'ds:

def// )8+ u(i), p) dR(u(i)) di, (A1)
0,1]

wheredR is the normal centered distribution with precisiog(i). Aggregate supply is then always
defined as a function dB, p) even in case of behavioral heterogeneity.
In the case where every firfnsubmits a linear supply(j):

X(J) = w1 =v(i)2)p—y(i)o—V¥(i)1 (B +u(j))],
with 1,(j) the precision ofi(j), the above definition (A.1) reduces to Equation (4). O

Proof of equation (7). This is purely routine. Rewrite Equation (5) as:

___B+roay ayj
TTraloy) ITrady)

where the random variabte is:

1
w=0+—=¢.
ayp
The observation of is equivalent to the observation @f(i.e. the conditional distributiof|p is the same
as6|w). It follows thattg), = Tg),,- Standard computations givg,, = T+ azyizrg (Whereorzyizrg is the
precision of the noise term w), and (7) follows.

Proof of Proposition 1. We prove this Proposition using the best response mappiagifead in
Lemma 1 and the fact that a RE®), v, V5. T;,) is a fixed point of this best response mapping. In the case

K’(0) > /212, it is straightforward to check thg = v; = v; = T}, = 0 is the unique equilibrium. In the
caseK’(0) < /212, combining equations (9) and (11) shows ttfaandy; are the solutions to:

2K'(14) .

V1= w Ty (A.2)

and substituting this expression into equation (11) gives:

2K$rﬁ) [ZKH(J )T*ZGZTg—l-T—i-T] 1, (A.3)

The LHS of the latter equation (A.3) is an increasing functdd T}, (increasing fro ZKqJ( 91 to +oo

whenty increases from 0 te-). This implies that there is a uniqag solving this equation. Giver,
there exists a unique positive solutiginto equation (A.2) and therefore unique solutighsindy; of the
two equations (8) and (10). O

19l the required measurability assumptions are made.
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Proof of Lemma 1. Deriving the best response of a firimio a given profile of strategies of the
other firms is purely routine (given that the aggregate bielhaf others’ firms is characterized by the 3
parametersyo, y1,Y2)). Profitm(i) of firmi is:

i) = [ B)x(1) — 5 ¢ K02~ K(x(0))
Clearly, the profit maximizing output igi) = W (p— E[B|p,s(i)]). Given Equation (5), we have
2 o
copsi) - SO0

wherew =0+ Giyl We have then:

a2 V%Ts (1+a (1*Vé)\)/f*(ﬁ+0 Yo) +1(i)us(i)

T+1(i)u+a2y3Te

(1=y(i)2)p—¥(i)o—¥(i)1s(i) = p—

Identifying the coefficientg(i)o, y(i)1 andy(i)» to their counterparts in the RHS of the above expression
gives equations (8) to (10).
To compute the optimal precision, consider the expectefitpro

el = & (1p- 8)x() - 5 X)) ~K(x()

The partial derivative with respect tQ(i) is then:

aaEr[ggl)] - ar?i)u E <[p— BJx(i) - %% [x<i>]2> —K/(t(i)u),

wherex(i) = (1—y(i)2)p—VY(i)o—VY(i)15(i). StraightforwardlyE ((p— 8)x(i)) does not depend arti).
Thus, some computations show that

. 9 N2 . 2
O — S g = 8 (M) ki
The first order condition is then:
OE[(i)] . OE[m(i)] _ o
0. < O0andt(i)y T 0 (given the constraint(i), > 0).
agt[ggiu)] < 0 rewrites as equation (11):

g 1 Lo
> T T()o+ 022 < K'(t(i)u)-

The LHS is decreasing and the RHS is increasing. This imfhi&s (i), = O if %m < K'(0) and
1(i)y is the unique solution of

v 1 o
2[t+1(i)u+02y8T 2 K@), (A.4)

otherwise. O

29



Proof of Proposition 2. At a REE witht}, > 0, the total differential of best response mapping (defined
in equations (8) to (11)) is:

100 ] fayi
010 Gy |
001 % dy(i)e |
0 0 0 —(k+2)] \ar(iy
o i i
- % z_f 22(:123\:.?{ 0 Ol [dyo
B 0 0 |dy
% B ZGZTTS’C.YMZ _aer%yiz ol | dy
0 2”’“:32%4 o o \du

We write this system a&xX = Bx. The Jacobian of the best response dynamics at the REE ia thatrix

P =A"1B. Since it turns out thal is a triangular matrix (after tedious computations), itpeevalues
are equal to the elements on its main diagonal. The respesitjenvalued; ... A4 are:

2 2
a2y;°Te \ 202%y;°1e
5 0 4 - Vi
T 2 P-L
T+ T+ 02T Y} —(l—y{)#\sz
K" (1) +

u

A=0, Aa=A3=—

The condition for stability of this dynamical system is tladlteigenvalues are less than one in absolute
value. The stability conditions therefore af#;| < 1 and|A4| < 1. Using the definition (7) fory, the

condition|Az| < 1 rewrites as Condition(C.1), and the conditida| < 1 rewrites:

Vi
% “ lIJ T*Z
Tp< T T (1) ——— (A.5)
K" (t5) + Y T
Using the definitionn* = K,:ég'z)"ﬂ, some algebra shows that the right hand side of (A.5) is eual
T ( *+2> +1 ( *+2> Condition (A.5) then becomes (C.II). O

Proof of Proposition 3. The proof follows from quite simple computations. On the baad, Condition
(C.I) implies Condition (C.I) n‘fr] < 21};/1. On the other hand, the right hand side of Condition (C 1))
is greater tham;,/2 as soon ag* < ZTU/T

Proof of Lemma 2.
We first prove the following Claim:
Claim Every elementyo(i),yi(i),y2(i),Tu(i)) of 7 (Wp) satisfies:

yiy, = ) (A.6)

Proof of the Claim The Claim follows from Lemma 1 in the case of a constht Denote
(Yo, Y1, Y2, Tu) the element of\p such that

(Yo(i),y(i),¥2(i),Tu(i)) = T (Yo, Y1, Y2, Tw)-
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Notice thatk’ > y/2(T + a?y5 T¢)? rewritest + a?y3Te > Q. If T+ 0?y2Te > Q, then Lemma 1 implies
thatt,(i) = 0 andy(i); = 0 (so thaty(i); = Tu(i)/Q). Otherwise, ift + 0?2t < Q, then substitution of

(9) into (11) yields:
(V(i)1>2_i
(i) Q%

Given thaty(i)s > 0 (andt (i), > 0), we gety(i)s = T(1)u/Q. [

Given Claim 1 above, the mapis exactly the best response mapping defined in Lemma 1 When
is constant. Indeed, taking accountypf=1,/Q, Lemma 1 implies:

(i) t(i)y = 0inthe casa + 02T > Q,

(i) 1(i)y=Q—-1-¢ TETZ > 0in the case + 0?2t < Q.
Considering these two cases together gives Equation (13). O

Proof of Proposition 4.
We first prove some technical Lemmas (A.1 — A.5).

Lemma A.1 The sequence of sef§' (R, ) is decreasing, and therefore converges to a limit denoted
T (R,).
Proof of Lemma A.1. Given thatT is a continuous map oRto R, T (X) is an interval wheneveX
is an interval. Hencel (R..) is an interval, and one sees (step by step) that eVé(R.,.) is an interval
as well. We writeT" (R;.) = [17, T|] for everyn. Given thafT is decreasing, we have:
o= T,
o= T,

with T = 0 andt}, = Q — 1. Given thatt?2 andt? are inT (R..) = [0,Q — 1], we have:

1

L = Iy
o< T
Using the fact thaT is decreasing, we have first
To= T()<T@)=1
L= T(@) =T (M) =1

and |terat|ng the argument, we have thiais increasing and, is decreasing. Given that the sequences
17 andT, are bounded, they converge.[]

Lemma A.2 We have:

(@) T"(Ry) = {1} if Q-1 < 3.3,

(b.1) T*(Ry) = [T, Ty if 4 0(2 <Q- -3, wheret,, T} andT, are the 3 fixed points of
(t,andTy satisfy 0< 1, < T <Tyu< Q T),

(b.2) T*(R,) =T(R) =[0.Q-1]if Q- 1> 3.
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Proof of Lemma A.2. Let f(1,) =Q—1— O‘Q§€ru , and denotez the positive root off (z=

\/(Q—1) q?—is). Fort, € [0,Q—1], T (ty) > 0 iff Ty < z We distinguish between two cases:

In the cas&Q — 1 > z (Case(b.2) of the Lemma), then direct computations show (step by steg) t
for everyn, 1 = 0 andT}, = Q — 1. This proves Casgh.2).

In the cas&) — 1 < z(Casega) and(b.1) of the Lemma), theT = f and (given thaT ([0,Q—1]) C
[0,Q—1]) T?2 = 2. It follows thatT? is increasing (a3 is decreasing)T?(0) > 0,T2(Q—1) < Q—T.
The next Claim characterizes the fixed pointgéfin [0,Q — TJ:

ClaimIf Q—1 < 40(21 thenT? has one fixed point if0,Q —1]. | %Q— <Q-1< W thenT?
has three fixed points,, T;; andT in [0,Q — 1] (with T, < T}, < Ty).
Proof of the Claim. Recall thafl 2 has at least one fixed point j6, Q — ] (that ist}}). The derivative
(T2)' (1) of T2 attyis:
(T2)' (1) = %' (1) = F'(10) £'(F (1)),

and the second derivative is:
AU f2 " (12'[5 2 (12'[5 2
(T2)" (1) = (12) (1) =4 o) (T

It follows that f2” has a unique positive real root. Hendé, (that isT2) has 0 or 1 inflection point in

[0,Q—T]. If T? has no inflection point, then it has exactly one fixed polittié convex). IfT2 has one
inflection point, then it has 1 or 3 fixed points.

Summing upT2 has 1 or 3 fixed points. To determine the exact number of fixattgove compute:

T/ (Tu) — —ZFTu,
* Q2 GZTS
T, = a7t 4 o2 Q-1)+1-1]|. (A.7)
Some more computations show that:
2/ Q?
(T (t )>1<:>ZGT<Q—T. (A.8)
Hence,T? has exactly one fixed point ii9,Q — 1] in the case% OST < Q-1 and 3 fixed points in the

3 Q@
casey o3 >0Q-1. O

From the proof of Lemma A.1 above, we know th&t2 = T2 (1) andt"2 = T2(t"), and the limits
of T andt), are fixed points of 2. Then, the Claim allows us to prove Ca$a§sand(b 1):

(i) in Case(a), the two sequencas, andT}, converge necessarily . This proves Casgs).

(i) in Case(b.1), one checks that] < 1, < T, < T[.2° It follows that1, andT}, converge ta, and
T, respectively. This proves Cagel).

201% <1, < Ty < T} implies thatT (t}) > T (1) > T (Ty) > T (T5), that is1? < 1, < T, < T2. Iterating the
argument shows the inequality for every
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O

LemmaA.3 SCT”(R,).

Proof of Lemma A.3. Denote projX) the projection of a seX ¢ R* on thet-axis (proj(X) C R).
By definition, S= proj(W, ). Notice the 3 following properties (they can be checkedlgasi

(i) proj(7 (E)) =T (proj(E)) for every sek of strategies,
(i) proj (ENF) c proj(E) N proj(F) for every set€ andF,
(iii) If proj (E) is included in an interval of R, then projconv(E)) C I.

An optimal information precision lies iif (Ry) = [0,Q—1]|. This statement writes: proj\y) C
T (R.). Hence, projconv(Wi)) C T (R4). It follows that proj(z (conv(Wi))) =T (proj(conv(W))) C
T2(R.).

Given W, = 7 (conv(W;)) NW; and the second property above, we have: (Ws) C T?(R,).
Iterating the argument shows that, for everyproj(W,) C T"(R,). Given that the sequend#, is
decreasing, prd\\,) is decreasing and converges to gk, ). Hence, projW.,) C T"(R..) for everyn.
Hence, projW,,) C T*(R.).

In the caseQ — 1 < 4a2 , T (R:) = {1};}. Lemma A.3 above implies the®= {1;;}. This proves
Point(a) in the Proposmon We now turn attention to Pafhtl) in the Proposition.

Lemma A4 Assumezz—T <Q-1< Q . The strategies(yo,\_/l,\_/2,1u) and (Yp,Y1,Ys, Tu) are
uniquely defined as the solution of the system.

(Yo’Yl’Yz’IU> = 7 (Yo V1. Yo, Tw) (A.9)
(\_/07\_/17\_/27Tu) = T <Y07Y17Y271u)7 (AlO)

wherert,, andT, are the 2 fixed points 6f? distinct fromt;,. Furthermorey, < Yy < Oand 0<y, < Y,
Proof of Lemma A.4. The proof of Lemma A.2 above implids= f and (together with Lemma 2):

T+T(i) + 0?31 =Q
Using this equation, the best response map defined in Lemnraiesw
at

Y(i)o = _Q—;(B‘i'ayo)rw (A.11)
vin - (A12)
ViR = Garal-y). (A13)
2
W = TW)=Q- 1'% (A.14)
It follows from Equations (A.9) and (A.10) th% andy, are characterized by:
Yo = —%(BM\_/O)IU,
y, = —%(Bw%)fu

This linear system uniquely defingg andyj (as functions oft,, andT, that are already known). Anal-
ogously, a characterization g_JI, A andy, in terms oft, andT, follows from Equations (A.9) and
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(A.10). Straightforward computations relying on the inalify 7, < Q—T < 5 show thaty, < Yo < 0
and 0<y, <y, O

We write that a sefE of strategies has the best-response property iff, for evam, there isZ in E
such thatr (Z) = z Straightforwardly, any se& with the best-response property is a subsét/of

Lemma A.5 Assumezﬁ <Q- q?—is Consider the sefE of strategies(Yo, Yi,Yz2,Tu) € Wo
satisfying:
Yo € [T,
Y1 = TU/Q7
y2 S {\_/2,\_/2} ]
Tu € [1,T-

E has the best-response property.

Proof of Lemma A.5. Consider an elemeritp, y1,Y2,Ty) € E. Using Equations (A.11) to (A.14), it
is straightforward to show that there is a unidyg Y}, Y5, 1) such that(yo,v1,Y2,Tu) = 7 (Y, Y1 Yo, Tu)-
Furthermore, Equation (A.14) implies thet € [t,,Ty], and Equation (A.11) writesy, = h(yo,1}),
where:

o5 B

= vo— 2
cx2rsr(,y a

h (y07-[(j) =
Thus,yp € [yo,yo} impliesh (yo, ) <h(yo, T};) <h(Yp,Ty,)- Thisimplies (recaliy, < Y, < 0):h (yo,ru) <

h(yo, 1) <h(Yp,Iy), thatis:yy € [yo,\_/o] . Analogous arguments imply; = 1,/Q andy, € [\_/z,yz} . O

Summing up, we have shown that: |ﬁ <Q-T< g3 then

(i) [t,,Tu] C Saccording to Lemma A.5.
(i) SCc T*(R4) = [1,,Tu] according to Lemmas A.1 and A.3.
Hence,S= [t,,,Ty). This proves Pointb.1) in the Proposition.
We now turn attention to the ca%g% < Q—T1. On the one hand, Lemmas A.1 and A.3 show that

SCT”(R;)=[0,Q—T1]. Onthe other hand, Lemma A.5 can be rewritten in the g%fg(—x Q—Ttusing

[0,Q— 1] instead offt,,,T,| (at the cost of some more computations). Herf@& —t] € S. This proves
Point(b.2) in the Proposition. O

Proof of Corollary 1. From Equations (7) and (A.2), we have:

2
* ast *2
T, = stru .
and the conditiorTy, < Tj;/2 rewrites:
a’te
ZFTU <L
Equation (A.7) shows then tha} < 1;,/2 rewrites:
3@
4021, ZQ-T
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It follows that if %q?—ia > Q—1 is a necessary and sufficient condition for local stabiiitys also a
necessary condition for global stability.

To prove the reciprocal implication, recall from the prodfRroposition 4 (see proof of Lemma
A.4 in this proof) that, under the assumptiéna?—ig > Q —T1, the best response mapping is described by

Equations (A.11) to (A.14). Clearly, the mapping describgdEquations (A.11) to (A.14) is globally
contracting onz (W) (and even on the convex envelope®fWp)). It follows then that the REE is a
SREE. O

Proof of Proposition 5. As we have already written in Subsection Z:3increases ime. It follows that

Tp=lim¢, . T. From Equation (6), we know that lim;. ..., T, = 0. Equation (7) angh = T}, %(T“)
(see Proposition 1) implies:
2K’ (t
T, = 0T ( “)T’[,z. (A.15)
g

We can then rewrite Equation (6) as

k * lIJ
=,/ A.16
T +T+Ty K1) ( )
e
rQaX:TEILnlmrp: 3K'(0) —-1>0.
Th+T, = U< (A.17)
Pt VK@) TP

Hence, 1y, > 19®/2 implies thatt < 17®/2 < 15. This violates Condition (C.I) that is a necessary
condition for stability. Hence, we have thg} < 17®/2 whenever the REE is a LSREE. This implies
1-maxLSREE< -[maX/Z
P p : . _ ) . . »
In the case of constant marginal costs of information adiiuis a necessary and sufficient condition
for existence of a SREE i, < %rﬁ (see Corollary 1). As Equation (A.16) writes:

and conclude that:

Equation (A.16) gives:

T +T1+1,=0Q,

the conditionty, < %r:j becomes:

O

Proof of Proposition 6. A SREE exists if and only if the inequality (14) holds (see @lary 1). The
ponnomiaI—%a?i—g +Q -1 of degree 2 iQ has two positive rootQ andQ:

2 5 [, 3T
Q 3a TS( az_[)a
2 5 31
= - 1 1-—- .
Q 3¢ Ts( +1/ G2T>

Hence, a SREE exists i) < Q < Q. The two bound¥’ andK referred to in the Proposition then arise

from the definition 0lQ = /& O
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Proof of Proposition 7. Recall from Proposition 2 that a LSREE exists iff Conditig@sl) and (C.1I)
holds. Consider first that, given Equation (A.15), the cbadi(C.I) (that isty, < 1) writes:

2K/ *
o2t KW g (A.18)
g
The derivative (w.r.tt}) of the LHS of the above inequality is:
4K// * 4K/ *
azrg%rﬁ + azrg% > 0. (A.19)

It follows that Condition (C.I) holds ifft}, is smaller than a certain threshold. We have already written
in Subsection Informativeness of prices thigtecreases in. Given thatrt;, = O for T large enough (see
Proposition 1), the above inequality (A.18) holds true fdarge enough, and there exigts> 0 such
that Condition (C.I) holds ift > 13.

We now turn attention to Condition (C.11). Given thgt= 0 for T large enough (see Proposition 1),
it follows that, fort large enoughty, = 0 and Condition (C.II) holds true. With constant elastiaity

Condition (C.II) writesC > 0, where:

k n *
T —T—T,.
vFaynt e

_2+n
T 41n
Consider that:
dC 2+ndt;  n dty dtj,
dt ~ 4+ndt  4+n dr;dr’
Differentiating Equation (A.15) and substituting in theoab expression gives:

dc 1 T\dt, n
dr_(n+2)<4+r] r;;) at "4+

Differentiating Equation (6) to comput%[ﬂ and substituting again in the above expression gives:

dc ~(N+2) 75T+ (N+2)T; 8

@ I (G2t Gnr DT A

1 (3n*=2) 15+ (8n+3n%+8) T+ 3n%t
440 Int+CGn+2)p+ (n+yT

WhenevelC = 0, some computations show that:

e, 1 (220 +150°+30°+8) T+ (8n + 3n*+ 8) nt + Hnt

> 0.
dt = (4+4n)? N+ (Gn+2) 5+ (Gn+ )T

This means that (as a function of) is always increasing around a vafusuch thatC (1) = 0. It follows
that there is at most one value o$uch thaC = 0. Given thatC > 0 for 1 large enough, there is at least
one such value af. Denotety, this value.C > 0 iff T > T».

Let T = max(t1,T2). This proves the result.

In the caseK’ = 0, a necessary and sufficient condition for existence of aESREondition (14).
This condition is exactly:

3 Q°

T>0Q—-

4021’
where the RHS does not dependmn O
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